Type: | Package |
Title: | Format Output of Various Routines in a Suitable Way for Reports and Publication |
Description: | A bunch of convenience functions that transform the results of some basic statistical analyses into table format nearly ready for publication. This includes descriptive tables, tables of logistic regression and Cox regression results as well as forest plots. |
Version: | 2023.01.17 |
Maintainer: | Thomas A. Gerds <tag@biostat.ku.dk> |
Depends: | prodlim (≥ 1.5.4) |
Imports: | survival (≥ 2.38), data.table (≥ 1.10.4), lava (≥ 1.5.1), multcomp (≥ 1.4) |
Suggests: | riskRegression (≥ 2020.09.07), testthat, smcfcs (≥ 1.4.1), rms (≥ 6.1.0), mitools (≥ 2.4), nlme (≥ 3.1-131) |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
RoxygenNote: | 7.2.1 |
NeedsCompilation: | no |
Packaged: | 2023-01-17 14:12:57 UTC; tag |
Author: | Thomas A. Gerds [aut, cre], Christian Torp-Pedersen [ctb], Klaus K Holst [ctb], Brice Ozenne [aut] |
Repository: | CRAN |
Date/Publication: | 2023-01-17 17:40:09 UTC |
Publish package
Description
This package processes results of descriptive statistcs and regression analysis into final tables and figures of a manuscript
CiTable data
Description
These data are used for testing Publish package functionality.
Format
A data frame with 27 observations on the following 9 variables.
- Drug
- Time
- Drug.Time
- Dose
- Mean
- SD
- n
- HazardRatio
- lower
- upper
- p
Examples
data(CiTable)
labellist <- split(CiTable[,c("Dose","Mean","SD","n")],CiTable[,"Drug"])
labellist
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")], labels=labellist)
Diabetes data of Dr John Schorling
Description
These data are courtesy of Dr John Schorling, Department of Medicine, University of Virginia School of Medicine. The data consist of 19 variables on 403 subjects from 1046 subjects who were interviewed in a study to understand the prevalence of obesity, diabetes, and other cardiovascular risk factors in central Virginia for African Americans. According to Dr John Hong, Diabetes Mellitus Type II (adult onset diabetes) is associated most strongly with obesity. The waist/hip ratio may be a predictor in diabetes and heart disease. DM II is also agssociated with hypertension - they may both be part of "Syndrome X". The 403 subjects were the ones who were actually screened for diabetes. Glycosolated hemoglobin > 7.0 is usually taken as a positive diagnosis of diabetes.
Format
A data frame with 205 observations on the following 12 variables.
- id
subject id
- chol
Total Cholesterol
- stab.glu
Stabilized Glucose
- hdl
High Density Lipoprotein
- ratio
Cholesterol/HDL Ratio
- glyhb
Glycosolated Hemoglobin
- location
a factor with levels (Buckingham,Louisa)
- age
age (years)
- gender
male or female
- height
height (inches)
- height.europe
height (cm)
- weight
weight (pounds)
- weight.europe
weight (kg)
- frame
a factor with levels (small,medium,large)
- bp.1s
First Systolic Blood Pressure
- bp.1d
First Diastolic Blood Pressure
- bp.2s
Second Diastolic Blood Pressure
- bp.2d
Second Diastolic Blood Pressure
- waist
waist in inches
- hip
hip in inches
- time.ppn
Postprandial Time when Labs were Drawn in minutes
- AgeGroups
Categorized age
- BMI
Categorized BMI
References
Willems JP, Saunders JT, DE Hunt, JB Schorling: Prevalence of coronary heart disease risk factors among rural blacks: A community-based study. Southern Medical Journal 90:814-820; 1997 Schorling JB, Roach J, Siegel M, Baturka N, Hunt DE, Guterbock TM, Stewart HL: A trial of church-based smoking cessation interventions for rural African Americans. Preventive Medicine 26:92-101; 1997.
Examples
data(Diabetes)
A study was made of all 26 astronauts on the first eight space shuttle flights (Bungo et.al., 1985). On a voluntary basis 17 astronauts consumed large quantities of salt and fluid prior to landing as a countermeasure to space deconditioning, while nine did not.
Description
A study was made of all 26 astronauts on the first eight space shuttle flights (Bungo et.al., 1985). On a voluntary basis 17 astronauts consumed large quantities of salt and fluid prior to landing as a countermeasure to space deconditioning, while nine did not.
Format
A data frame with 52 observations on the following 4 variables:
- Status
Factor with levels Post (after flight) and Pre (before flight)
- HR
Supine heart rate(beats per minute)
- Treatment
Countermeasure salt/fluid (1= yes, 0=no)
- ID
Person id
References
Altman, Practical statistics for medical research, Page 223, Ex. 9.1. Bungo et.al., 1985
Examples
data(SpaceT)
Add units to data set
Description
Add variable units to data.frame (or data.table).
Usage
Units(object, units)
Arguments
object |
A data.frame or data.table |
units |
Named list of units. Names are variable names. If omitted, show existing units. |
Details
If the object has units existing units are replaced by given units.
Value
The object augmented with attribute "units"
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
Diabetes <- Units(Diabetes,list(BMI="kg/m^2"))
Units(Diabetes)
Diabetes <- Units(Diabetes,list(bp.1s="mm Hg",bp.2s="mm Hg"))
Units(Diabetes)
Automatic selection and formatting of breaks in cut
Description
A version of cut
that easily formats the labels and places breaks by default.
Usage
acut(
x,
n = 5,
type = "default",
format = NULL,
format.low = NULL,
format.high = NULL,
dig.lab = 3,
right = TRUE,
breaks,
labels = TRUE,
...
)
Arguments
x |
a numeric vector which is to be converted to a factor by cutting (passed directly to |
n |
number of bins to create based on the empirical quantiles of x. This will be overruled if |
type |
a high-level formatting option. For now, the only other option than the default setting is " |
format |
string used to make labels. %l and %u identifies the lower and upper value of the breaks respectively. See examples. |
format.low |
string used specifically on the lowest label. |
format.high |
string used specifically on the highest label. |
dig.lab |
integer which is used when labels are not given. It determines the number of digits used in formatting the break numbers. (Passed directly to |
right |
logical, indicating if the intervals should be closed on the right (and open on the left) or vice versa (passed directly to |
breaks |
specify breaks manually as in |
labels |
logical, indicating whether or not to make labels or simply use ordered numbers. If TRUE, the labels are constructed as discribed above. |
... |
further arguments passed to |
Details
The formats are supplied by specifiyng the text around the lower (%l) and upper (%l) value (see examples).
If user specified breaks are supplied, the default labels from cut
are used.
If automatic breaks are used, the default labels are a slight modification at the end point of the default from cut
All this can of course be adjusted manually through the format functionality (see below).
By default, 5 breaks are constructed according to the quantiles with of the input x
.
The number of breaks can be adjusted, and default specifying breaks (as in cut
) can be supplied instead.
If type
is changed from "default
" to another option, a different formatting template is used.
For now the only other option is "age
", which is designed to be well suited to easily group age variables.
When type
="age
" only the breaks
argument is used, and it behaves different from otherwise.
If a single number is supplied, intervals of length breaks
will automatically be constructed (starting from 0).
If a vector is supplied, the intervals are used as in cut
but formatted differently, see examples.
Value
same as for cut. A vector of 'factors' is created, unless 'labels=FALSE'.
Author(s)
Anders Munch
Examples
data(Diabetes) # load dataset
## The default uses format similar to cut
chol.groups <- acut(Diabetes$chol)
table(chol.groups)
## The formatting can easily be changed
chol.groups <- acut(Diabetes$chol,format="%l-%u",n=5)
table(chol.groups)
## The default is to automatic place the breaks, so the number of this can easily be changed.
chol.groups <- acut(Diabetes$chol,n=7)
table(chol.groups)
## Manually setting format and breaks
age.groups <- acut(Diabetes$age,format="%l-%u",breaks=seq(0,100,by=10))
table(age.groups)
## Other variations
age.groups <- acut(Diabetes$age,
format="%l-%u",
format.low="below %u",
format.high="above %l",
breaks=c(0, seq(20,80,by=10), Inf))
table(age.groups)
BMI.groups <- acut(Diabetes$BMI,
format="BMI between %l and %u",
format.low="BMI below %u",
format.high="BMI above %l")
table(BMI.groups)
org(as.data.frame(table(BMI=BMI.groups)))
## Instead of using the quantiles, we can specify equally spaced breaks,
## but still get the same formatting
BMI.grouping <-
seq(min(Diabetes$BMI,na.rm=TRUE), max(Diabetes$BMI,na.rm=TRUE), length.out=6)
BMI.grouping[1] <- -Inf # To get all included
BMI.groups <- acut(Diabetes$BMI,
breaks=BMI.grouping,
format="BMI between %l and %u",
format.low="BMI below %u",
format.high="BMI above %l")
table(BMI.groups)
org(as.data.frame(table(BMI=BMI.groups)))
## Using type="age"
## When using type="age", categories of 10 years are constructed by default.
## The are formatted to be easier to read when the values are ages.
table(acut(Diabetes$age, type="age"))
## This can be changes with the breaks argument.
## Note that this is diffent from cut when breaks is a single number.
table(acut(Diabetes$age, type="age", breaks=20))
## Of course We can also supply the breaks manually.
## The formatting depends on whether or not all the values fall within the breaks:
## All values within the breaks
table(acut(Diabetes$age, type="age", breaks=c(0, 30, 50, 80, 100)))
## Some values below and above the breaks
table(acut(Diabetes$age, type="age", breaks=c(30, 50, 80)))
Compute mean values with confidence intervals
Description
Compute mean values with confidence intervals
Usage
ci.mean(x, ...)
Arguments
x |
object passed to methods |
... |
passed to methods |
Details
Normal approximation
Value
a list with mean values and confidence limits
Compute mean values with confidence intervals
Description
Compute mean values with confidence intervals
Usage
## Default S3 method:
ci.mean(
x,
alpha = 0.05,
normal = TRUE,
na.rm = TRUE,
statistic = "arithmetic",
...
)
Arguments
x |
numeric vector |
alpha |
level of significance |
normal |
If |
na.rm |
If |
statistic |
Decide which mean to compute: either |
... |
not used |
Details
Normal approximation
Value
a list with mean values and confidence limits
Author(s)
Thomas Gerds
Run a series of Cox regression models
Description
Run a series of Cox regression analyses for a list of predictor variables and summarize the results in a table. The Cox models can be adjusted for a fixed set of covariates
This function runs on coxph
from the survival package.
Usage
coxphSeries(formula, data, vars, ...)
Arguments
formula |
The fixed part of the regression formula. For
univariate analyses this is simply |
data |
A |
vars |
A list of variable names, the changing part of the regression formula. |
... |
passed to publish.coxph |
Value
matrix with results
Author(s)
Thomas Alexander Gerds
Examples
library(survival)
data(pbc)
## collect hazard ratios from three univariate Cox regression analyses
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
uni.hr <- coxphSeries(Surv(time,status==2)~1,vars=c("edema","bili","protime"),data=pbc)
uni.hr
## control the logistic regression analyses for age and gender
## but collect only information on the variables in `vars'.
controlled.hr <- coxphSeries(Surv(time,status==2)~age+sex,vars=c("edema","bili","protime"),data=pbc)
controlled.hr
Expand regression coefficient table
Description
Expand regression coefficient table
Usage
fixRegressionTable(
x,
varnames,
reference.value,
reference.style = NULL,
factorlevels,
scale = NULL,
nmiss,
intercept
)
Arguments
x |
object resulting from |
varnames |
Names of variables |
reference.value |
Reference value for reference categories |
reference.style |
Style for showing results for categorical
variables. If |
factorlevels |
Levels of the categorical variables. |
scale |
Scale for some or all of the variables |
nmiss |
Number of missing values |
intercept |
Intercept |
Details
This function expands results from "regressionTable" with extralines and columns
For factor variables the reference group is shown. For continuous variables the units are shown and for transformed continuous variables also the scale. For all variables the numbers of missing values are added.
Value
a table with regression coefficients
Author(s)
Thomas Alexander Gerds <tag@biostat.ku.dk>
Summary tables for a given followup time point.
Description
Summarize baseline variables in groups defined by outcome at a given followup time point
Usage
followupTable(formula, data, followup.time, compare.groups, ...)
Arguments
formula |
Formula A formula whose left hand side is a
|
data |
A data.frame in which all the variables of
|
followup.time |
Time point at which to evaluate outcome status. |
compare.groups |
Method for comparing groups. |
... |
Passed to |
Details
If compare.groups!=FALSE
, p-values are obtained from stopped Cox regression, i.e., all events are censored at follow-up time.
A univariate Cox regression model is fitted to assess the effect of each variable on the right hand side of the formula on the event hazard and shown is the p-value of anova(fit)
, see anova.coxph
.
Value
Summary table.
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
univariateTable
Examples
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
pbc$sex <- factor(pbc$sex,levels=c("m","f"),labels=c("m","f"))
followupTable(Hist(time,status)~age+edema+sex,data=pbc,followup.time=1000)
Formatting confidence intervals
Description
Format confidence intervals
Usage
formatCI(
x,
lower,
upper,
show.x = FALSE,
handler = "sprintf",
format = "[l;u]",
degenerated = "asis",
digits = 2,
nsmall = digits,
sep = "",
reference.pos,
reference.label = "",
...
)
Arguments
x |
not used (for compatibility with format) |
lower |
Numeric vector of lower limits |
upper |
Numeric vector of upper limits |
show.x |
Logical. If |
handler |
Function to format numeric values. Default is
|
format |
Character string in which |
degenerated |
String to show when lower==upper. Default is '–' |
digits |
If handler |
nsmall |
If handler |
sep |
Field separator |
reference.pos |
Position of factor reference |
reference.label |
Label for factor reference |
... |
passed to handler |
Details
The default format for confidence intervals is [lower; upper].
Value
String vector with confidence intervals
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
plot.ci ci.mean
Examples
x=ci.mean(rnorm(10))
formatCI(lower=x[3],upper=x[4])
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884))
# change format
formatCI(lower=c(0.001,-2.8413),upper=c(1,3.0008884),format="(l, u)")
# show x
formatCI(x=x$mean,lower=x$lower,upper=x$upper,format="(l, u)",show.x=TRUE)
# change of handler function
l <- c(-0.0890139,0.0084736,144.898333,0.000000001)
u <- c(0.03911392,0.3784706,3338944.8821221,0.00001)
cbind(format=formatCI(lower=l,upper=u,format="[l;u)",digits=2,nsmall=2,handler="format"),
prettyNum=formatCI(lower=l,upper=u,format="[l;u)",digits=2,nsmall=2,handler="prettyNum"),
sprintf=formatCI(lower=l,upper=u,format="[l;u)",digits=2,nsmall=2,handler="sprintf"))
Run a series of generalized linear regression analyses
Description
Run a series of generalized linear regression analyses for a list of predictor variables and summarize the results in a table. The regression models can be adjusted for a fixed set of covariates.
Usage
glmSeries(formula, data, vars, ...)
Arguments
formula |
The fixed part of the regression formula. For
univariate analyses this is simply |
data |
A |
vars |
A list of variable names, the changing part of the regression formula. |
... |
passed to glm |
Value
Matrix with regression coefficients, one for each element of vars
.
Author(s)
Thomas Alexander Gerds
Examples
data(Diabetes)
Diabetes$hyper1 <- factor(1*(Diabetes$bp.1s>140))
## collect odds ratios from three univariate logistic regression analyses
uni.odds <- glmSeries(hyper1~1,vars=c("chol","hdl","location"),data=Diabetes,family=binomial)
uni.odds
## control the logistic regression analyses for age and gender
## but collect only information on the variables in `vars'.
controlled.odds <- glmSeries(hyper1~age+gender,
vars=c("chol","hdl","location"),
data=Diabetes, family=binomial)
controlled.odds
labelUnits
Description
Label output tables
Usage
labelUnits(x, ...)
Arguments
x |
A matrix obtained with |
... |
not used |
Details
Modify labels and values of variables in summary tables
Value
The re-labeled matrix
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
univariateTable
Examples
data(Diabetes)
tab <- summary(univariateTable(gender~AgeGroups+chol+waist,data=Diabetes))
publish(tab)
ltab <- labelUnits(tab,"chol"="Cholesterol (mg/dL)","<40"="younger than 40")
publish(ltab)
## pass labels immediately to utable
utable(gender~AgeGroups+chol+waist,data=Diabetes,
"chol"="Cholesterol (mg/dL)","<40"="younger than 40")
## sometimes useful to state explicitly which variables value
## should be re-labelled
utable(gender~AgeGroups+chol+waist,data=Diabetes,
"chol"="Cholesterol (mg/dL)","AgeGroups.<40"="younger than 40")
Efficient coding of date variables
Description
This function eases the process of generating date variables. All variables in a data.frame which match a regular expression are included
Usage
lazyDateCoding(data, format, pattern, varnames, testlength = 10)
Arguments
data |
Data frame in which to search for date variables. |
format |
passed to as.Date |
pattern |
match date variables |
varnames |
variable names |
testlength |
how many rows of data should be evaluated to guess the format. |
Details
The code needs to be copy-and-pasted from the R-output buffer into the R-code buffer. This can be customized for the really efficiently working people, e.g., in emacs.
Value
R-code one line for each variable.
Author(s)
Thomas Alexander Gerds
Examples
d <- data.frame(x0="190101",x1=c("12/8/2019"),x2="12-8-2019",x3="20190812",stringsAsFactors=FALSE)
lazyDateCoding(d,pattern="x")
lazyDateCoding(d,pattern="3")
Efficient coding of factor levels
Description
This function eases the process of generating factor variables with relevant labels. All variables in a data.frame with less than a user set number of levels result in a line which suggests levels and labels. The result can then be modified for use.
Usage
lazyFactorCoding(data, max.levels = 10)
Arguments
data |
Data frame in which to search for categorical variables. |
max.levels |
Treat non-factor variables only if the number of unique values less than max.levels. Defaults to 10. |
Details
The code needs to be copy-and-pasted from the R-output buffer into the R-code buffer. This can be customized for the really efficiently working people e.g. in emacs.
Value
R-code one line for each variable.
Author(s)
Thomas Alexander Gerds
Examples
data(Diabetes)
lazyFactorCoding(Diabetes)
Wrapper function for publish with output format org
Description
Wrapper for publish(...,org=TRUE)
Usage
org(x, ...)
Arguments
x |
object to format as org |
... |
passed to publish |
Value
See publish
Author(s)
Thomas Alexander Gerds
Parse interaction terms
Description
Parse interaction terms for regression tables
Usage
parseInteractionTerms(
terms,
xlevels,
units,
format.factor,
format.contrast,
format.scale,
format.scale.unit,
sep = ": ",
...
)
Arguments
terms |
Terms of a formula |
xlevels |
Factor levels corresponding to the variables in
|
units |
named list with unit labels. names should match variable names in formula. |
format.factor |
For categorical variables. A string which specifies the print format for factor labels.
The string has to contain the keywords |
format.contrast |
For categorical variables. A string which specifies the print format for constrast statements.
The string has to contain the keywords |
format.scale |
A string which specifies the print format for continuous variables without units.
The string has to contain the keyword |
format.scale.unit |
A string which specifies the print format for continuous variables with units.
The string has to contain the keywords |
sep |
a character string to separate the terms. Default is |
... |
Not yet used |
Details
Prepare a list of contrasts which combines regression coefficients to describe statistical interactions.
Value
List of contrasts which can be passed to
lava::estimate
.
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
lava::estimate
Examples
tt <- terms(formula(SBP~age+sex*BMI))
xlev <- list(sex=c("male","female"),BMI=c("normal","overweight","obese"))
parseInteractionTerms(terms=tt,xlevels=xlev)
parseInteractionTerms(terms=tt,xlevels=xlev,format.factor="var level")
parseInteractionTerms(terms=tt,xlevels=xlev,format.contrast="var(level:ref)")
tt2 <- terms(formula(SBP~age*factor(sex)+BMI))
xlev2 <- list("factor(sex)"=c("male","female"))
parseInteractionTerms(terms=tt2,xlevels=xlev2)
parseInteractionTerms(terms=tt2,xlevels=xlev2,units=list(age="yrs"))
data(Diabetes)
fit <- glm(bp.2s~age*factor(gender)+BMI,data=Diabetes)
parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels,
format.scale="var -- level:ref",units=list("age"='years'))
parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels,
format.scale.unit="var [unit]",units=list("age"='years'))
it <- parseInteractionTerms(terms=terms(fit$formula),xlevels=fit$xlevels)
ivars <- unlist(lapply(it,function(x)attr(x,"variables")))
lava::estimate(fit,function(p)lapply(unlist(it),eval,envir=sys.parent(-1)))
Plot confidence intervals
Description
Function to plot confidence intervals
Usage
## S3 method for class 'ci'
plot(x, xlim, xlab = "", labels, ...)
Arguments
x |
List, data.frame or other object of this form containing point estimates (first element) and the corresponding confidence intervals as elements lower and upper. |
xlim |
Limit of the x-axis |
xlab |
Label for the y-axis |
labels |
labels |
... |
Used to transport arguments to |
Details
Function to plot means and other point estimates with confidence intervals
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
x=ci.mean(bp.2s~AgeGroups,data=Diabetes)
plot(x,title.labels="Age groups",xratio=c(0.4,0.3))
x=ci.mean(bp.2s/500~AgeGroups+gender,data=Diabetes)
plot(x,xratio=c(0.4,0.2))
plot(x,xratio=c(0.4,0.2),
labels=split(x$labels[,"AgeGroups"],x$labels[,"gender"]),
title.labels="Age groups")
## Not run:
plot(x, leftmargin=0, rightmargin=0)
plotConfidence(x, leftmargin=0, rightmargin=0)
data(CiTable)
with(CiTable,plotConfidence(x=list(HazardRatio),
lower=lower,
upper=upper,
labels=CiTable[,2:6],
factor.reference.pos=c(1,10,19),
format="(u-l)",
points.col="blue",
digits=2))
with(CiTable,Publish::plot.ci(x=list(HazardRatio),
lower=lower,
upper=upper,
labels=CiTable[,2:6],
factor.reference.pos=c(1,10,19),
format="(u-l)",
points.col="blue",
digits=2,
leftmargin=-2,
title.labels.cex=1.1,
labels.cex=0.8,values.cex=0.8))
## End(Not run)
Plotting regression coefficients with confidence limits
Description
Plotting regression coefficients with confidence limits
Usage
## S3 method for class 'regressionTable'
plot(x, xlim, xlab, style = 1, ...)
Arguments
x |
regression table obtained with regressionTable |
xlim |
Limits for x-axis |
xlab |
Label for x-axis |
style |
Determines how to arrange variable names and their corresponding units |
... |
passed to plotConfidence |
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
regressionTable
Examples
## linear regression
data(Diabetes)
f <- glm(bp.1s~AgeGroups+chol+gender+location,data=Diabetes)
rtf <- regressionTable(f,factor.reference = "inline")
plot(rtf,cex=1.3)
## logistic regression
data(Diabetes)
f <- glm(I(BMI>25)~bp.1s+AgeGroups+chol+gender+location,data=Diabetes,family=binomial)
rtf <- regressionTable(f,factor.reference = "inline")
plot(rtf,cex=1.3)
## Poisson regression
data(trace)
fit <- glm(dead ~ smoking+ sex+ age+Time+offset(log(ObsTime)), family = poisson,data=trace)
rtab <- regressionTable(fit,factor.reference = "inline")
plot(rtab,xlim=c(0.85,1.15),cex=1.8,xaxis.cex=1.5)
## Cox regression
library(survival)
data(pbc)
coxfit <- coxph(Surv(time,status!=0)~age+log(bili)+log(albumin)+factor(edema)+sex,data=pbc)
pubcox <- publish(coxfit)
plot(pubcox,cex=1.5,xratio=c(0.4,0.2))
plot.subgroupAnalysis
Description
This function operates on a "subgroupAnalysis" object to produce a formatted table and a forest plot
Usage
## S3 method for class 'subgroupAnalysis'
plot(x, ...)
Arguments
x |
- a subgroupAnalysis object |
... |
- passed on to plotConfidence |
Details
This function produces a formatted table of a subgroupAnalysis object and adds a forest plot. If further details needs attention before plotting is is advisable use adjust the table produced by the summary function and then plotting with the plotConfidence function
Author(s)
Christian Torp-Pedersen
See Also
subgroupAnalysis, plotConfidence
Examples
#load libraries
library(Publish)
library(survival)
library(data.table)
data(traceR) #get dataframe traceR
setDT(traceR)
traceR[,':='(wmi2=factor(wallMotionIndex<0.9,levels=c(TRUE,FALSE),
labels=c("bad","good")),
abd2=factor(abdominalCircumference<95, levels=c(TRUE,FALSE),
labels=c("slim","fat")),
sex=factor(sex))]
fit_cox <- coxph(Surv(observationTime,dead)~treatment,data=traceR)
# Selected subgroups - univariable analysis
sub_cox <- subgroupAnalysis(fit_cox,traceR,treatment="treatment",
subgroup=c("smoking","sex","wmi2","abd2")) # subgroups as character string
plot(sub_cox)
Plot confidence intervals
Description
Function to plot confidence intervals with their values and additional labels. One anticipated use of this function involves first the generation of a regression object, then arrangement of a result table with "regressionTable", further arrangment of table with with e.g. "fixRegressionTable" and various user defined changes - and then finally table along with forest plot using the current function.
Usage
plotConfidence(
x,
y.at,
lower,
upper,
pch = 16,
cex = 1,
lwd = 1,
col = 4,
xlim,
xlab,
labels,
title.labels,
values,
title.values,
section.pos,
section.sep,
section.title = NULL,
section.title.x,
section.title.offset,
order,
leftmargin = 0.025,
rightmargin = 0.025,
stripes,
factor.reference.pos,
factor.reference.label = "Reference",
factor.reference.pch = 16,
refline = 1,
title.line = TRUE,
xratio,
y.offset = 0,
y.title.offset,
digits = 2,
format,
extremearrows.length = 0.05,
extremearrows.angle = 30,
add = FALSE,
layout = TRUE,
xaxis = TRUE,
...
)
Arguments
x |
Either a vector containing the point estimates or a list whose first element contains the point estimates. Further list elements can contain the confidence intervals and labels. In this case the list needs to have names 'lower' and 'upper' to indicate the values of the lower and the upper limits of the confidence intervals, respectively, and may have an element 'labels' which is a vector or matrix or list with labels. |
y.at |
Optional vector of y-position for the confidence intervals and corresponding values and labels. |
lower |
Lower confidence limits. Used if object |
upper |
Upper confidence limits. Used if object |
pch |
Symbol for points. |
cex |
Defaults size of all figures and plotting symbol.
Single elements are controlled separately. See |
lwd |
Default width of all lines Single elements are
controlled separately. See |
col |
Default colour of confidence intervals. |
xlim |
Plotting limits for the confidence intervals. See also
|
xlab |
Label for the x-axis. |
labels |
Vector or matrix or list with |
title.labels |
Main title for the column which shows the |
values |
Either logical or vector, matrix or list with
values. If |
title.values |
Main title for the column |
section.pos |
Vector with y-axis posititions for section.titles. |
section.sep |
Amount of space between paragraphs (applies only if |
section.title |
Intermediate section headings. |
section.title.x |
x-position for section.titles |
section.title.offset |
Y-offset for section.titles |
order |
Order of the three columns: labels, confidence limits, values. See examples. |
leftmargin |
Percentage of plotting region used for leftmargin. Default is 0.025. See also Details. |
rightmargin |
Percentage of plotting region used for rightmargin. Default is 0.025. See also Details. |
stripes |
Vector of up to three Logicals. If |
factor.reference.pos |
Position at which factors attain reference values. |
factor.reference.label |
Label to use at
|
factor.reference.pch |
Plotting symbol to use at
|
refline |
Position of a vertical line to indicate the null hypothesis. Default is 1 which would work for odds ratios and hazard ratios. |
title.line |
Position of a horizontal line to separate the title line from the plot |
xratio |
One or two values between 0 and 1 which determine how to split the plot window in horizontal x-direction. If there are two columns (labels, CI) or (CI, values) only one value is used and the default is 0.618 (goldener schnitt) which gives the graphical presentation of the confidence intervals 38.2 graph. The remaining 61.8 If there are three columns (labels, CI, values), xratio has two values which default to fractions of 0.7 according to the relative widths of labels and values, thus by default only 0.3 are used for the graphical presentation of the confidence intervals. The remaining 30 confidence intervals. See examles. |
y.offset |
Either a single value or a vector determining the vertical offset of all rows. If it is a single value all rows are shifted up (or down if negative) by this value. This can be used to add a second set of confidence intervals to an existing graph or to achieve a visual grouping of rows that belong together. See examples. |
y.title.offset |
Numeric value by which to vertically shift the titles of the labels and values. |
digits |
Number of digits, passed to |
format |
Format for constructing values of confidence intervals. Defaults to '(u;l)' if there are negative lower or upper values and to '(u-l)' otherwise. |
extremearrows.length |
Length of the arrows in case of confidence intervals that stretch beyond xlim. |
extremearrows.angle |
Angle of the arrows in case of confidence intervals that stretch beyond xlim. |
add |
Logical. If |
layout |
Logical. If |
xaxis |
Logical. If |
... |
Used to control arguments of the following subroutines:
|
Details
Function to plot means and other point estimates with confidence intervals, their values and additional labels . Horizonal margins as determined by par()$mar are ignored. Instead layout is used to divide the plotting region horizontally into two or three parts plus leftmargin and rightmargin.
When values is FALSE there are only two parts. The default order is labels on the left confidence intervals on the right. When no labels are given or labels is FALSE there are only two parts. The default order is confidence intervals on the left values on the right.
The default order of three parts from left to right is labels, confidence intervals, values. The order can be changed as shown by the examples below. The relative widths of the two or three parts need to be adapted to the actual size of the text of the labels. This depends on the plotting device and the size of the font and figures and thus has to be adjusted manually.
Oma can be used to further control horizontal margins, e.g., par(oma=c(0,4,0,4)).
If confidence limits extend beyond the range determined by xlim, then arrows are drawn at the x-lim borders to indicate that the confidence limits continue.
Value
List of dimensions and coordinates
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
library(Publish)
data(CiTable)
## A first draft version of the plot is obtained as follows
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper","p")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")])
## if argument labels is a named list the table is subdivided:
labellist <- split(CiTable[,c("Dose","Time","Mean","SD","n")],CiTable[,"Drug"])
labellist
## the data need to be ordered accordingly
CC= data.table::rbindlist(split(CiTable[,c("HazardRatio","lower","upper")],CiTable[,"Drug"]))
plotConfidence(x=CC, labels=labellist)
## The graph consist of at most three columns:
##
## column 1: labels
## column 2: printed values of the confidence intervals
## column 3: graphical presentation of the confidence intervals
##
## NOTE: column 3 appears always, the user decides if also
## column 1, 2 should appear
##
## The columns are arranged with the function layout
## and the default order is 1,3,2 such that the graphical
## display of the confidence intervals appears in the middle
##
## the order of appearance of the three columns can be changed as follows
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
order=c(1,3,2))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
order=c(2,3,1))
## if there are only two columns the order is 1, 2
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
values=FALSE,
order=c(2,1))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
values=FALSE,
order=c(1,2))
## The relative size of the columns needs to be controlled manually
## by using the argument xratio. If there are only two columns
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xratio=c(0.4,0.15))
## The amount of space on the left and right margin can be controlled
## as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xratio=c(0.4,0.15),
leftmargin=0.1,rightmargin=0.00)
## The actual size of the current graphics device determines
## the size of the figures and the space between them.
## The sizes and line widths are increased as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
xlab="Hazard ratio",
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
points.cex=3,
cex=2,
lwd=3,
xaxis.lwd=1.3,
xaxis.cex=1.3)
## Note that 'cex' of axis ticks is controlled via 'par' but
## cex of the label via argument 'cex' of 'mtext'.
## The sizes and line widths are decreased as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
cex=0.8,
lwd=0.8,
xaxis.lwd=0.8,
xaxis.cex=0.8)
## Another good news is that all figures can be controlled separately
## The size of the graphic device can be controlled in the usual way, e.g.:
## Not run:
pdf("~/tmp/testCI.pdf",width=8,height=8)
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")])
dev.off()
## End(Not run)
## More control of the x-axis and confidence intervals that
## stretch outside the x-range end in an arrow.
## the argument xlab.line adjusts the distance of the x-axis
## label from the graph
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
xlab="Hazard ratio",
xlab.line=1.8,
xaxis.at=c(0.8,1,1.3),
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlim=c(0.8,1.3))
## log-scale
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
xlab="Hazard ratio",
xlab.line=1.8,
xaxis.at=c(0.8,1,1.3),
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlim=c(0.8,1.3),plot.log="x")
## More pronounced arrows
## Coloured xlab expression
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
xlab=expression(HR[1](s)),
xlab.line=1.8,
xlab.col="darkred",
extremearrows.angle=50,
extremearrows.length=0.1,
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlim=c(0.8,1.3))
## Controlling the labels and their titles
## and the values and their titles
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlab="Hazard ratio",
title.values=expression(bold(HR (CI[95]))),
title.labels=c("Drug/Time","Dose","Mean","St.dev.","N"),
factor.reference.pos=c(1,10,19),
factor.reference.pch=16,
cex=1.3,
xaxis.at=c(0.75,1,1.25,1.5,2))
## For factor reference groups, one may want to replace the
## confidence intervals by the word Reference, as in the previous example.
## To change the word 'Reference' we use the argument factor.reference.label:
## To change the plot symbol for the reference lines factor.reference.pch
## To remove the plot symbol in the reference lines use 'NA' as follows:
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlab="Hazard ratio",
factor.reference.label="Ref",
title.values=expression(bold(HR (CI[95]))),
title.labels=c("Drug/Time","Dose","Mean","St.dev.","N"),
factor.reference.pos=c(1,10,19),
factor.reference.pch=NA,
cex=1.3,
xaxis.at=c(0.75,1,1.25,1.5,2))
## changing the style of the graphical confidence intervals
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
xlab="Hazard ratio",
factor.reference.pos=c(1,10,19),
points.pch=15,
points.col=rainbow(27),
points.cex=2,
arrows.col="darkblue",
cex=1.3,
order=c(1,3,2),
xaxis.at=c(0.75,1,1.25,1.5))
## the values column of the graph can have multiple columns as well
## to illustrate this we create the confidence intervals
## before calling the function and then cbind them
## to the pvalues
HR <- pubformat(CiTable[,6])
CI95 <- formatCI(lower=CiTable[,7],upper=CiTable[,8],format="(l-u)")
pval <- format.pval(CiTable[,9],digits=3,eps=10^{-3})
pval[pval=="NA"] <- ""
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
values=list("HR"=HR,"CI-95"=CI95,"P-value"=pval),
cex=1.2,
xratio=c(0.5,0.3))
## Finally, vertical columns can be delimited with background color
## NOTE: this may slow things down and potentially create
## large figures (many bytes)
col1 <- rep(c(prodlim::dimColor("green",density=22),
prodlim::dimColor("green")),length.out=9)
col2 <- rep(c(prodlim::dimColor("orange",density=22),
prodlim::dimColor("orange")),length.out=9)
col3 <- rep(c(prodlim::dimColor("blue",density=22),
prodlim::dimColor("blue")),length.out=9)
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
stripes=c(1,0,1),
stripes.col=c(col1,col2,col3))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
stripes=c(1,1,1),
stripes.col=c(col1,col2,col3))
threegreens <- c(prodlim::dimColor("green",density=55),
prodlim::dimColor("green",density=33),
prodlim::dimColor("green",density=22))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Drug.Time","Dose","Mean","SD","n")],
values=FALSE,
xlim=c(0.75,1.5),
stripes=c(1,1,1),
xratio=c(0.5,0.15),
stripes.horizontal=c(0,9,18,27)+0.5,
stripes.col=threegreens)
# combining multiple plots into one
layout(t(matrix(1:5)))
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
labels=CiTable[,c("Mean","n")],
layout=FALSE)
plotConfidence(x=CiTable[,c("HazardRatio","lower","upper")],
layout=FALSE)
Print confidence intervals
Description
Print confidence intervals
Usage
## S3 method for class 'ci'
print(x, se = FALSE, print = TRUE, ...)
Arguments
x |
Object containing point estimates and the corresponding confidence intervals |
se |
If |
print |
Logical: if |
... |
passed to summary.ci |
Details
This format of the confidence intervals is user-manipulable.
Value
A string: the formatted confidence intervals
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
ci plot.ci formatCI summary.ci
Examples
library(lava)
m <- lvm(Y~X)
m <- categorical(m,Y~X,K=4)
set.seed(4)
d <- sim(m,24)
ci.mean(Y~X,data=d)
x <- ci.mean(Y~X,data=d)
print(x,format="(l,u)")
Printing univariate tables
Description
Print function for subgroupAnalysis
Usage
## S3 method for class 'subgroupAnalysis'
print(x, ...)
Arguments
x |
- An object obtained with |
... |
Passed to summary.subgroupAnalysis |
Details
This function is simply calling summary.subgroupAnalysis
Value
The result of summary.subgroupAnalysis(x)
Author(s)
Christian Torp-Pedersen (ctp@heart.dk)
See Also
subgroupAnalysis
print results of 2x2 contingency table analysis
Description
print results of 2x2 contingency table analysis
Usage
## S3 method for class 'table2x2'
print(x, digits = 1, ...)
Arguments
x |
object obtained with table2x2 |
digits |
rounding digits |
... |
not used |
Value
invisible x
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
table2x2
Examples
table2x2(table("marker"=rbinom(100,1,0.4),"response"=rbinom(100,1,0.1)))
table2x2(matrix(c(71,18,38,8),ncol=2),stats="table")
table2x2(matrix(c(71,18,38,8),ncol=2),stats=c("rr","fisher"))
Printing univariate tables
Description
Print function for univariate tables
Usage
## S3 method for class 'univariateTable'
print(x, ...)
Arguments
x |
An object obtained with |
... |
Passed to summary.univariateTable |
Details
This function is simply calling summary.univariateTable
Value
The result of summary.univariateTable(x)
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
univariateTable
Format numbers for publication
Description
Format numbers according to a specified handler function. Currently supported are sprintf, format and prettyNum.
Usage
pubformat(x, digits = 2, nsmall = digits, handler = "sprintf", ...)
Arguments
x |
numeric vector |
digits |
number of digits |
nsmall |
see handler |
handler |
String specififying the name of the function which should
perform the formatting. See |
... |
Passed to handler function if applicable, i.e., not to |
Value
Formatted number
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
sprintf
, format
, prettyNum
Examples
pubformat(c(0.000143,12.8,1))
pubformat(c(0.000143,12.8,1),handler="format")
pubformat(c(0.000143,12.8,1),handler="format",trim=TRUE)
pubformat(c(0.000143,12.8,1),handler="prettyNum")
Publishing tables and figures
Description
Publish provides summary functions for data and results of statistical analysis in ready-for-publication design
Usage
publish(object, ...)
Arguments
object |
object to be published |
... |
Passed to method. |
Details
Some warnings are currently suppressed.
Value
Tables and figures
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
publish.CauseSpecificCox publish.ci publish.coxph publish.glm publish.riskRegression publish.survdiff
Tabulizing cause-specific hazard ratio from all causes with confidence limits and Wald test p-values.
Description
Publish cause-specific Cox models
Usage
## S3 method for class 'CauseSpecificCox'
publish(
object,
cause,
confint.method,
pvalue.method,
factor.reference = "extraline",
units = NULL,
print = TRUE,
...
)
Arguments
object |
Cause-specific hazard model obtained with
|
cause |
Show a table for this cause. If omitted, list all causes. |
confint.method |
See |
pvalue.method |
See |
factor.reference |
See |
units |
See |
print |
If |
... |
passed on to control formatting of parameters,
confidence intervals and p-values. See
|
Details
The cause-specific hazard ratio's are combined into one table.
Value
Table with cause-specific hazard ratios, confidence limits and p-values.
Author(s)
Thomas Alexander Gerds <tab@biostat.ku.dk>
Examples
if (requireNamespace("riskRegression",quietly=TRUE)){
library(riskRegression)
library(prodlim)
library(survival)
data(Melanoma,package="riskRegression")
fit1 <- CSC(list(Hist(time,status)~sex,Hist(time,status)~invasion+epicel+age),
data=Melanoma)
publish(fit1)
publish(fit1,pvalue.stars=TRUE)
publish(fit1,factor.reference="inline",units=list("age"="years"))
# wide format (same variables in both Cox regression formula)
fit2 <- CSC(Hist(time,status)~invasion+epicel+age, data=Melanoma)
publish(fit2)
# with p-values
x <- publish(fit2,print=FALSE)
table <- cbind(x[[1]]$regressionTable,
x[[2]]$regressionTable[,-c(1,2)])
}
Present logistic regression and Cox regression obtained with mitools::MIcombine based on smcfcs::smcfcs multiple imputation analysis
Description
Regression tables after multiple imputations
Usage
## S3 method for class 'MIresult'
publish(
object,
confint.method,
pvalue.method,
digits = c(2, 4),
print = TRUE,
factor.reference = "extraline",
intercept,
units = NULL,
fit,
data,
...
)
Arguments
object |
Object obtained with mitools::MIcombine based on smcfcs::smcfcs multiple imputation analysis |
confint.method |
No options here. Only Wald type confidence intervals. |
pvalue.method |
No options here. Only Wald type tests. |
digits |
Rounding digits for all numbers but the p-values. |
print |
If |
factor.reference |
Style for showing results for
categorical. See |
intercept |
See |
units |
See |
fit |
One fitted model using the same formula as
|
data |
Original data set which includes the missing values |
... |
passed to summary.regressionTable, labelUnits and publish.default. |
Details
Show results of smcfcs based multiple imputations of missing covariates in publishable format
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
## Not run:
if (requireNamespace("riskRegression",quietly=TRUE)
& requireNamespace("mitools",quietly=TRUE)
& requireNamespace("smcfcs",quietly=TRUE)){
library(riskRegression)
library(mitools)
library(smcfcs)
## continuous outcome: linear regression
# lava some data with missing values
set.seed(7)
d=sampleData(78)
## generate missing values
d[X1==1,X6:=NA]
d[X2==1,X3:=NA]
d=d[,.(X8,X4,X3,X6,X7)]
sapply(d,function(x)sum(is.na(x)))
# multiple imputation (should set m to a large value)
set.seed(17)
f= smcfcs(d,smtype="lm",
smformula=X8~X4+X3+X6+X7,
method=c("","","logreg","norm",""),m=3)
ccfit=lm(X8~X4+X3+X6+X7,data=d)
mifit=MIcombine(with(imputationList(f$impDatasets),
lm(X8~X4+X3+X6+X7)))
publish(mifit,fit=ccfit,data=d)
publish(ccfit)
## binary outcome
# lava some data with missing values
set.seed(7)
db=sampleData(78,outcome="binary")
## generate missing values
db[X1==1,X6:=NA]
db[X2==1,X3:=NA]
db=db[,.(Y,X4,X3,X6,X7)]
sapply(db,function(x)sum(is.na(x)))
# multiple imputation (should set m to a large value)
set.seed(17)
fb= smcfcs(db,smtype="logistic",
smformula=Y~X4+X3+X6+X7,
method=c("","","logreg","norm",""),m=2)
ccfit=glm(Y~X4+X3+X6+X7,family="binomial",data=db)
mifit=MIcombine(with(imputationList(fb$impDatasets),
glm(Y~X4+X3+X6+X7,family="binomial")))
publish(mifit,fit=ccfit)
publish(ccfit)
## survival: Cox regression
library(survival)
# lava some data with missing values
set.seed(7)
ds=sampleData(78,outcome="survival")
## generate missing values
ds[X5==1,X6:=NA]
ds[X2==1,X3:=NA]
ds=ds[,.(time,event,X4,X3,X6,X7)]
sapply(ds,function(x)sum(is.na(x)))
set.seed(17)
fs= smcfcs(ds,smtype="coxph",
smformula="Surv(time,event)~X4+X3+X6+X7",
method=c("","","","logreg","norm",""),m=2)
ccfit=coxph(Surv(time,event)~X4+X3+X6+X7,data=ds)
mifit=MIcombine(with(imputationList(fs$impDatasets),
coxph(Surv(time,event)~X4+X3+X6+X7)))
publish(mifit,fit=ccfit,data=ds)
publish(ccfit)
## competing risks: Cause-specific Cox regression
library(survival)
# lava some data with missing values
set.seed(7)
dcr=sampleData(78,outcome="competing.risks")
## generate missing values
dcr[X5==1,X6:=NA]
dcr[X2==1,X3:=NA]
dcr=dcr[,.(time,event,X4,X3,X6,X7)]
sapply(dcr,function(x)sum(is.na(x)))
set.seed(17)
fcr= smcfcs(dcr,smtype="compet",
smformula=c("Surv(time,event==1)~X4+X3+X6+X7",
"Surv(time,event==2)~X4+X3+X6+X7"),
method=c("","","","logreg","norm",""),m=2)
## cause 2
ccfit2=coxph(Surv(time,event==2)~X4+X3+X6+X7,data=dcr)
mifit2=MIcombine(with(imputationList(fcr$impDatasets),
coxph(Surv(time,event==2)~X4+X3+X6+X7)))
publish(mifit2,fit=ccfit2,data=dcr)
publish(ccfit2)
}
## End(Not run)
Publish predictive accuracy results
Description
Write output of riskRegression::Score
in tables
Usage
## S3 method for class 'Score'
publish(object, metrics, score = TRUE, contrasts = TRUE, level = 3, ...)
Arguments
object |
Object obtained with |
metrics |
Which metrics to put into tables. Defaults to
|
score |
Logical. If |
contrasts |
Logical. If |
level |
Level of subsection headers, i.e., ** for level 2 and *** for level 3 (useful for emacs org-users). Default is plain subsection headers no stars. A negative value will suppress subjection headers. |
... |
Passed to publish |
Details
Collect prediction accuracy results in tables
Value
Results of Score in tabular form
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
if (requireNamespace("riskRegression",quietly=TRUE)){
library(riskRegression)
library(survival)
learn = sampleData(100)
val= sampleData(100)
f1=CSC(Hist(time,event)~X1+X8,data=learn)
f2=CSC(Hist(time,event)~X1+X5+X6+X8,learn)
xs=Score(list(f1,f2),data=val,formula=Hist(time,event)~1)
publish(xs)
}
Publish tables with confidence intervals
Description
Publish tables with confidence intervals
Usage
## S3 method for class 'ci'
publish(object, format = "[u;l]", se = FALSE, ...)
Arguments
object |
Object of class ci containing point estimates and the corresponding confidence intervals |
format |
A string which indicates the format used for
confidence intervals. The string is passed to
|
se |
If |
... |
passed to |
Details
This function calls summary.ci with print=FALSE and then publish
Value
table with confidence intervals
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
summary.ci
Examples
data(Diabetes)
publish(ci.mean(chol~location+gender,data=Diabetes),org=TRUE)
Tabulize hazard ratios with confidence intervals and p-values.
Description
Tabulize the part of the result of a Cox regression analysis which is commonly shown in publications.
Usage
## S3 method for class 'coxph'
publish(
object,
confint.method,
pvalue.method,
print = TRUE,
factor.reference = "extraline",
units = NULL,
probindex = FALSE,
...
)
Arguments
object |
A |
confint.method |
See |
pvalue.method |
See |
print |
If |
factor.reference |
See |
units |
See |
probindex |
Logical. If |
... |
passed to |
Details
Transforms the log hazard ratios to hazard ratios and returns them with confidence limits and p-values. If explanatory variables are log transformed or log2 transformed, a scaling factor is multiplied to both the log-hazard ratio and its standard-error.
Value
Table with hazard ratios, confidence intervals and p-values.
Author(s)
Thomas Alexander Gerds
Examples
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,
levels=c("0","0.5","1"), labels=c("0","0.5","1"))
fit = coxph(Surv(time,status!=0)~age+sex+edema+log(bili)+log(albumin),
data=na.omit(pbc))
publish(fit)
## forest plot
plot(publish(fit),cex=1.3)
publish(fit,ci.digits=2,pvalue.eps=0.01,pvalue.digits=2,pvalue.stars=TRUE)
publish(fit,ci.digits=2,ci.handler="prettyNum",pvalue.eps=0.01,
pvalue.digits=2,pvalue.stars=TRUE)
publish(fit, ci.digits=2, ci.handler="sprintf", pvalue.eps=0.01,
pvalue.digits=2,pvalue.stars=TRUE, ci.trim=FALSE)
fit2 = coxph(Surv(time,status!=0)~age+sex+edema+log(bili,base=2)+log(albumin)+log(protime),
data=na.omit(pbc))
publish(fit2)
# with cluster variable
fit3 = coxph(Surv(time,status!=0)~age+cluster(sex)+edema+log(bili,base=2)
+log(albumin)+log(protime),
data=na.omit(pbc))
publish(fit3)
# with strata and cluster variable
fit4 = coxph(Surv(time,status!=0)~age+cluster(sex)+strata(edema)+log(bili,base=2)
+log(albumin)+log(protime),
data=pbc)
publish(fit4)
Tabulize regression coefficients with confidence intervals and p-values.
Description
Tabulate the results of a generalized linear regression analysis.
Usage
## S3 method for class 'glm'
publish(
object,
confint.method,
pvalue.method,
digits = c(2, 4),
print = TRUE,
factor.reference = "extraline",
intercept = ifelse((is.null(object$family) || object$family$family == "gaussian"), 1L,
0L),
units = NULL,
...
)
Arguments
object |
A |
confint.method |
See |
pvalue.method |
See |
digits |
A vector of two integer values. These determine how to round
numbers (first value) and p-values (second value). E.g., c(1,3) would
mean 1 digit for all numbers and 3 digits for p-values.
The actual rounding is done by |
print |
If |
factor.reference |
Style for showing results for categorical. See |
intercept |
See |
units |
See |
... |
passed to |
reference |
Style for showing results for categorical
variables. If |
Details
The table shows changes in mean for linear regression and odds ratios for logistic regression (family = binomial).
Value
Table with regression coefficients, confidence intervals and p-values.
Author(s)
Thomas Alexander Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
## Linear regression
f = glm(bp.2s~frame+gender+age,data=Diabetes)
publish(f)
publish(f,factor.reference="inline")
publish(f,pvalue.stars=TRUE)
publish(f,ci.format="(l,u)")
### interaction
fit = glm(bp.2s~frame+gender*age,data=Diabetes)
summary(fit)
publish(fit)
Fit = glm(bp.2s~frame*gender+age,data=Diabetes)
publish(Fit)
## Logistic regression
Diabetes$hyper1 <- factor(1*(Diabetes$bp.1s>140))
lrfit <- glm(hyper1~frame+gender+age,data=Diabetes,family=binomial)
publish(lrfit)
### interaction
lrfit1 <- glm(hyper1~frame+gender*age,data=Diabetes,family=binomial)
publish(lrfit1)
lrfit2 <- glm(hyper1~frame*gender+age,data=Diabetes,family=binomial)
publish(lrfit2)
## Poisson regression
data(trace)
trace <- Units(trace,list("age"="years"))
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)
rtf <- regressionTable(fit,factor.reference = "inline")
summary(rtf)
publish(fit)
## gls regression
if (requireNamespace("nlme",quietly=TRUE)){
requireNamespace("lava",quietly=TRUE)
library(lava)
library(nlme)
m <- lvm(Y ~ X1 + gender + group + Interaction)
distribution(m, ~gender) <- binomial.lvm()
distribution(m, ~group) <- binomial.lvm(size = 2)
constrain(m, Interaction ~ gender + group) <- function(x){x[,1]*x[,2]}
d <- sim(m, 1e2)
d$gender <- factor(d$gender, labels = letters[1:2])
d$group <- factor(d$group)
e.gls <- gls(Y ~ X1 + gender*group, data = d,
weights = varIdent(form = ~1|group))
publish(e.gls)
## lme
fm1 <- lme(distance ~ age*Sex,
random = ~1|Subject,
data = Orthodont)
res <- publish(fm1)
}
Pretty printing of test results.
Description
Pretty printing of test results.
Usage
## S3 method for class 'htest'
publish(object, title, ...)
Arguments
object |
Result of |
title |
Decoration also used to name output |
... |
Used to transport arguments |
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
publish(t.test(bp.2s~gender,data=Diabetes))
publish(wilcox.test(bp.2s~gender,data=Diabetes))
publish(with(Diabetes,t.test(bp.2s,bp.1s,paired=TRUE)))
publish(with(Diabetes,wilcox.test(bp.2s,bp.1s,paired=TRUE)))
Publishing a matrix in raw, org, latex, or muse format
Description
This is the heart of the Publish package
Usage
## S3 method for class 'matrix'
publish(
object,
title,
colnames = TRUE,
rownames = TRUE,
col1name = "",
digits = 4,
try.convert = TRUE,
sep = " ",
endhead,
endrow,
style,
inter.lines,
latex = FALSE,
wiki = FALSE,
org = FALSE,
markdown = FALSE,
tabular = TRUE,
latex.table.format = NA,
latex.hline = 1,
latex.nodollar = FALSE,
...
)
Arguments
object |
Matrix to be published |
title |
Title for table, only in wiki and muse format |
colnames |
If |
rownames |
If |
col1name |
Name for first column |
digits |
Numbers are rounded according to digits |
try.convert |
Logical. If |
sep |
Field separator when style is |
endhead |
String to be pasted at the end of the first row (header) |
endrow |
String to be pasted at the end of each row |
style |
Table style for export to |
inter.lines |
A named list which contains strings to be
placed between the rows of the table. An element with name
|
latex |
If |
wiki |
If |
org |
If |
markdown |
If |
tabular |
For style |
latex.table.format |
For style |
latex.hline |
For style |
latex.nodollar |
For style |
... |
Used to transport arguments. Currently supports
|
Examples
x <- matrix(1:12,ncol=3)
publish(x)
# rounding the numeric part of data mixtures
y <- cbind(matrix(letters[1:12],ncol=3),x,matrix(rnorm(12),ncol=3))
publish(y,digits=1)
publish(x,latex=TRUE,
inter.lines=list("1"="text between line 1 and line 2",
"3"="text between line 3 and line 4"))
Publishing results of riskRegression
Description
Preparing a publishable table from riskRegression results
Usage
## S3 method for class 'riskRegression'
publish(object, digits = c(2, 4), print = TRUE, ...)
Arguments
object |
object of class riskRegression as obtained with functions ARR and LRR. |
digits |
Number of digits for regression coefficients |
print |
If |
... |
passed to |
Value
Table with regression coefficients, confidence intervals and p-values
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
ARR LRR
Examples
if (requireNamespace("riskRegression",quietly=TRUE)){
library(riskRegression)
library(prodlim)
library(lava)
library(survival)
set.seed(20)
d <- SimCompRisk(20)
f <- ARR(Hist(time,event)~X1+X2,data=d,cause=1)
publish(f)
publish(f,digits=c(1,3))
}
Format summary table of aov results
Description
Format summary table of aov results
Usage
## S3 method for class 'summary.aov'
publish(
object,
print = TRUE,
handler = "sprintf",
digits = c(2, 4),
nsmall = digits,
...
)
Arguments
object |
glm object |
print |
Logical. Decide about whether or not to print the results. |
handler |
see |
digits |
see |
nsmall |
see |
... |
used to transport further arguments |
Examples
data(Diabetes)
f <- glm(bp.1s~age+chol+gender+location,data=Diabetes)
publish(summary(aov(f)),digits=c(1,2))
Alternative summary of survdiff results
Description
Alternative summary of survdiff results
Usage
## S3 method for class 'survdiff'
publish(object, digits = c(2, 4), print = TRUE, ...)
Arguments
object |
Object obtained with |
digits |
Vector with digits for rounding numbers: the second for pvalues, the first for all other numbers. |
print |
If |
... |
Not (yet) used. |
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
library(survival)
data(pbc)
sd <- survdiff(Surv(time,status!=0)~sex,data=pbc)
publish(sd)
publish(sd,digits=c(3,2))
Regression table
Description
Tabulate the results of a regression analysis.
Usage
regressionTable(
object,
param.method = "coef",
confint.method = c("default", "profile", "robust", "simultaneous"),
pvalue.method = c("default", "robust", "simultaneous"),
factor.reference = "extraline",
intercept = 0L,
units = NULL,
noterms = NULL,
probindex = 0L,
...
)
Arguments
object |
Fitted regression model obtained with |
param.method |
Method to obtain model coefficients. |
confint.method |
Method to obtain confidence
intervals. Default is 'default' which leads to Wald
type intervals using the model based estimate of standard
error. 'profile' yields profile likelihood confidence
intervals, available from library MASS for |
pvalue.method |
Method to obtain p-values. If
|
factor.reference |
Style for showing results for categorical
variables. If |
intercept |
Logical. If |
units |
List of units for continuous variables. See examples. |
noterms |
Position of terms that should be ignored. E.g., for a Cox model with a cluster(id) term, there will be no hazard ratio for variable id. |
probindex |
Logical. If |
... |
Not yet used |
Details
The basic use of this function is to generate a near publication worthy table from a regression object. As with summary(object) reference levels of factor variables are not included. Expansion of the table with such values can be performed using the "fixRegressionTable" function. Forest plot can be added to the output with "plotRegressionTable".
regressionTable produces an object (list) with the parameters deriveds. The summary function creates a data frame which can be used as a (near) publication ready table.
The table shows changes in mean for linear regression, odds ratios for logistic regression (family = binomial) and hazard ratios for Cox regression.
Value
List of regression blocks
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
# linear regression
data(Diabetes)
f1 <- glm(bp.1s~age+gender+frame+chol,data=Diabetes)
summary(regressionTable(f1))
summary(regressionTable(f1,units=list("chol"="mmol/L","age"="years")))
## with interaction
f2 <- glm(bp.1s~age*gender+frame+chol,data=Diabetes)
summary(regressionTable(f2))
#Add reference values
summary(regressionTable(f2))
f3 <- glm(bp.1s~age+gender*frame+chol,data=Diabetes)
publish(f3)
regressionTable(f3)
# logistic regression
Diabetes$hyp1 <- factor(1*(Diabetes$bp.1s>140))
l1 <- glm(hyp1~age+gender+frame+chol,data=Diabetes,family="binomial")
regressionTable(l1)
publish(l1)
plot(regressionTable(l1))
## with interaction
l2 <- glm(hyp1~age+gender+frame*chol,data=Diabetes,family="binomial")
regressionTable(l2)
l3 <- glm(hyp1~age*gender+frame*chol,data=Diabetes,family="binomial")
regressionTable(l3)
# Cox regression
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
c1 <- coxph(Surv(time,status!=0)~log(bili)+age+protime+sex+edema,data=pbc)
regressionTable(c1)
# with interaction
c2 <- coxph(Surv(time,status!=0)~log(bili)+age+protime*sex+edema,data=pbc)
regressionTable(c2)
c3 <- coxph(Surv(time,status!=0)~edema*log(bili)+age+protime+sex+edema+edema:sex,data=pbc)
regressionTable(c3)
if (requireNamespace("nlme",quietly=TRUE)){
## gls regression
library(lava)
library(nlme)
m <- lvm(Y ~ X1 + gender + group + Interaction)
distribution(m, ~gender) <- binomial.lvm()
distribution(m, ~group) <- binomial.lvm(size = 2)
constrain(m, Interaction ~ gender + group) <- function(x){x[,1]*x[,2]}
d <- sim(m, 1e2)
d$gender <- factor(d$gender, labels = letters[1:2])
d$group <- factor(d$group)
e.gls <- gls(Y ~ X1 + gender*group, data = d,
weights = varIdent(form = ~1|group))
regressionTable(e.gls)
summary(regressionTable(e.gls))
}
Spaghettiogram
Description
A spaghettiogram is showing repeated measures (longitudinal data)
Usage
spaghettiogram(
formula,
data,
xlim,
ylim,
xlab = "",
ylab = "",
axes = TRUE,
col,
lwd,
lty,
pch,
legend = FALSE,
add = FALSE,
background = TRUE,
...
)
Arguments
formula |
A formula which specifies the variables for the spaghettiograms. If Y ~ X + id(Z) then for each value of Z the spaghettiogram is the graph (X,Y) in the subset defined by the value of Z. Data are expected to be in the "long" format. Y is a numeric vector and X is a factor whose levels define the X-axis. Each level of the id-vector corresponds to one line (spaghetti) in the plot. |
data |
data set in which variables X, Y and Z are defined. |
xlim |
Limits for x-axis |
ylim |
Limits for y-axis |
xlab |
Label for x-axis |
ylab |
Label for x-axis |
axes |
Logical indicating if axes should be drawn. |
col |
Colors for the spaghettiograms |
lwd |
Widths for the spaghettiograms |
lty |
Type for the spaghettiograms |
pch |
Point-type for the spaghettiograms |
legend |
If |
add |
If |
background |
Control the background color of the graph. |
... |
used to transport arguments which are passed to the
following subroutines: |
Value
List with data of each subject
Examples
data(SpaceT)
Spaghettiogram(HR~Status+id(ID),
data=SpaceT)
Special frame
Description
Extract data and design matrix including specials from call
Usage
specialFrame(
formula,
data,
unspecials.design = TRUE,
specials,
specials.factor = TRUE,
specials.design = FALSE,
strip.specials = TRUE,
strip.arguments = NULL,
strip.alias = NULL,
strip.unspecials = NULL,
drop.intercept = TRUE,
response = TRUE,
na.action = options()$na.action
)
Arguments
formula |
Formula whose left hand side specifies the event history, i.e., either via Surv() or Hist(). |
data |
Data frame in which the formula is interpreted |
unspecials.design |
Passed as is to
|
specials |
Character vector of special function names.
Usually the body of the special functions is function(x)x but
e.g., |
specials.factor |
Passed as is to |
specials.design |
Passed as is to |
strip.specials |
Passed as |
strip.arguments |
Passed as |
strip.alias |
Passed as |
strip.unspecials |
Passed as |
drop.intercept |
Passed as is to |
response |
If FALSE do not get response data. |
na.action |
Decide what to do with missing values. |
Details
Obtain a list with the data used for event history regression analysis. This function cannot be used directly on the user level but inside a function to prepare data for survival analysis.
Value
A list which contains
- the response
- the design matrix (see model.design
)
- one entry for each special (see model.design
)
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
model.frame model.design Hist
Examples
## Here are some data with an event time and no competing risks
## and two covariates X1 and X2.
## Suppose we want to declare that variable X1 is treated differently
## than variable X2. For example, X1 could be a cluster variable, or
## X1 should have a proportional effect on the outcome.
d <- data.frame(y=1:7,
X2=c(2.24,3.22,9.59,4.4,3.54,6.81,5.05),
X3=c(1,1,1,1,0,0,1),
X4=c(44.69,37.41,68.54,38.85,35.9,27.02,41.84),
X1=factor(c("a","b","a","c","c","a","b"),
levels=c("c","a","b")))
## define special functions prop and cluster
prop <- function(x)x
cluster <- function(x)x
## We pass a formula and the data
e <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,
data=d,
specials=c("prop","cluster"))
## The first element is the response
e$response
## The other elements are the design, i.e., model.matrix for the non-special covariates
e$design
## and a data.frame for the special covariates
e$prop
## The special covariates can be returned as a model.matrix
e2 <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,
data=d,
specials=c("prop","cluster"),
specials.design=TRUE)
e2$prop
## and the non-special covariates can be returned as a data.frame
e3 <- specialFrame(y~prop(X1)+X2+cluster(X3)+X4,
data=d,
specials=c("prop","cluster"),
specials.design=TRUE,
unspecials.design=FALSE)
e3$design
Plot predictions of logistic regression
Description
Plotting the prediction of a logistic regression model with confidence bands against one continuous variable.
Usage
splinePlot.lrm(
object,
xvar,
xvalues,
xlim = range(xvalues),
ylim,
xlab = xvar,
ylab = scale[[1]],
col = 1,
lty = 1,
lwd = 3,
confint = TRUE,
newdata = NULL,
scale = c("risk", "odds"),
add = FALSE,
...
)
Arguments
object |
Logistic regression model fitted with |
xvar |
Name of the variable to show on x-axis |
xvalues |
Sequence of |
xlim |
x-axis limits |
ylim |
y-axis limits |
xlab |
x-axis labels |
ylab |
y-axis labels |
col |
color of the line |
lty |
line style |
lwd |
line width |
confint |
Logical. If |
newdata |
How to adjust |
scale |
Character string that determines the outcome scale (y-axis). Choose between |
add |
Logical. If |
... |
Further arguments passed to |
Details
Function which extracts from a logistic regression model
fitted with rms::lrm
the predicted risks or odds.
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
Diabetes$hypertension= 1*(Diabetes$bp.1s>140)
library(rms)
uu <- datadist(Diabetes)
options(datadist="uu")
fit=lrm(hypertension~rcs(age)+gender+hdl,data=Diabetes)
splinePlot.lrm(fit,xvar="age",xvalues=seq(30,50,1))
Background and grid color control.
Description
Some users like background colors, and it may be helpful to have grid lines
to read off e.g. probabilities from a Kaplan-Meier graph. Both things can be
controlled with this function. However, it mainly serves
plot.prodlim
.
Usage
stripes(
xlim,
ylim,
col = "white",
lwd = 1,
gridcol = "gray77",
fill = "white",
horizontal = NULL,
vertical = NULL,
border = "black",
xpd = FALSE
)
Arguments
xlim |
Limits for the horizontal x-dimension. Defaults to par("usr")[1:2]. |
ylim |
Limits for the vertical y-dimension. |
col |
Colors use for the stripes. Can be a vector of colors which are then repeated appropriately. |
lwd |
Line width |
gridcol |
Color of grid lines |
fill |
Color to fill the background rectangle given by par("usr"). |
horizontal |
Numerical values at which to show horizontal grid lines, and at which to change the color of the stripes. |
vertical |
Numerical values at which to show vertical grid lines. |
border |
If a fill color is provided, the color of the border around the background. |
xpd |
From |
Author(s)
Thomas Alexander Gerds <tag@biostat.ku.dk>
Examples
plot(0,0)
backGround(bg="beige",fg="red",vertical=0,horizontal=0)
plot(0,0)
stripes(col=c("yellow","green"),gridcol="red",xlim=c(-1,1),horizontal=seq(0,1,.1))
stripes(col=c("yellow","green"),gridcol="red",horizontal=seq(0,1,.1))
Subgroup Analysis - Interactions and estimates
Description
The function can examine Cox regression, logistic regression and Poisson regression (Poisson regression for survival analysis) where the effect of one variable is of particular interest. This function systematically checks for effect modification with a list of other variables.
In randomised studies the main regression analysis is often univariate and includes only the exposure of interest. In observational studies the main regression analysis can readily be adjusted for other variables including those which may modify the effect of the variable of interest.
Usage
subgroupAnalysis(
object,
data,
treatment,
subgroups,
confint.method = "default",
factor.reference = "extraline",
...
)
Arguments
object |
- glm, coxph or cph object for which subgroups should be analyzed. |
data |
- Dataset including all relevant variables |
treatment |
- Must be numeric - 0/1 |
subgroups |
- A vector of variable names presenting the factor variables where subgroups should be formed. These variables should all be "factors" |
confint.method |
"default" creates Wald type confidence interval, "robust", creates creates robust standard errors - see regressionTable function. |
factor.reference |
"extraline" creates an extraline for the reference, "inline" avoids this line. |
... |
additional arguments such as case weights, which are passed on to |
Details
The function can only handle a bivariate treatment, which MUST coded as zero or one. The p-value for interaction is obtained with a likelihood ratio test comparing the main regression analysis with the interaction model.
There are plot and print functions available for the function see helppages for plot.subgroupAnalysis and print.subgroupAnalysis
Value
A data.frame with subsgroup specifications, number in each subgroup, parameter estimates and p-value for interaction. A forest plot can be obtained with "plotConfidence".
Author(s)
Christian Torp-Pedersen
See Also
coxph, glm, plotConfidence
Examples
#load libraries
library(data.table)
library(Publish)
library(survival)
data(traceR) #get dataframe traceR
data.table::setDT(traceR)
traceR[,':='(wmi2=factor(wallMotionIndex<0.9,levels=c(TRUE,FALSE),
labels=c("bad","good")),
abd2=factor(abdominalCircumference<95, levels=c(TRUE,FALSE),
labels=c("slim","fat")))]
traceR[,sex:=as.factor(sex)] # all subgroup variables needs to be factor
traceR[observationTime==0,observationTime:=1]
# remove missing covariate values
traceR=na.omit(traceR)
# univariate analysis of smoking in subgroups of age and sex
# Main regression analysis is a simple/univariate Cox regression
fit_cox <- coxph(Surv(observationTime,dead)~treatment,data=traceR)
sub_cox <- subgroupAnalysis(fit_cox,traceR,treatment="treatment",
subgroups=c("smoking","sex","wmi2","abd2"))
sub_cox
# to see how the results are obtained consider the variable: smoking
fit_cox_smoke <- coxph(Surv(observationTime,dead)~treatment*smoking,data=traceR)
# the last three rows of the following output:
publish(fit_cox_smoke)
# are included in the first 3 rows of the result of the sub group analysis:
sub_cox[1:3,]
# the p-value is obtained as:
fit_cox_smoke_add <- coxph(Surv(observationTime,dead)~treatment+smoking,data=traceR)
anova(fit_cox_smoke_add,fit_cox_smoke,test="Chisq")
# Note that a real subgroup analysis would be to subset the data
fit_cox1a <- coxph(Surv(observationTime,dead)~treatment,data=traceR[smoking=="never"])
fit_cox1b <- coxph(Surv(observationTime,dead)~treatment,data=traceR[smoking=="current"])
fit_cox1c <- coxph(Surv(observationTime,dead)~treatment,data=traceR[smoking=="prior"])
## when the main analysis is already adjusted
fit_cox_adj <- coxph(Surv(observationTime,dead)~treatment+smoking+sex+wmi2+abd2,
data=traceR)
sub_cox_adj <- subgroupAnalysis(fit_cox_adj,traceR,treatment="treatment",
subgroups=c("smoking","sex","wmi2","abd2")) # subgroups as character string
sub_cox_adj
# When both start and end are in the Surv statement:
traceR[,null:=0]
fit_cox2 <- coxph(Surv(null,observationTime,dead)~treatment+smoking+sex+wmi2+abd2,data=traceR)
summary(regressionTable(fit_cox))
sub_cox2 <- subgroupAnalysis(fit_cox2,traceR,treatment="treatment",
subgroups=c("smoking","sex","wmi2","abd2"))
# Analysis with Poisson - and the unrealistic assumption of constant hazard
# and adjusted for age in all subgroups
fit_p <- glm(dead~treatment+age+offset(log(observationTime)),family="poisson",
data=traceR)
sub_pois <- subgroupAnalysis(fit_p,traceR,treatment="treatment",
subgroups=~smoking+sex+wmi2+abd2)
# Analysis with logistic regression - and very wrongly ignoring censoring
fit_log <- glm(dead~treatment+age,family="binomial",data=traceR)
sub_log <- subgroupAnalysis(fit_log,traceR,treatment="treatment",
subgroups=~smoking+sex+wmi2+abd2, factor.reference="inline")
Summarize confidence intervals
Description
Summarize confidence intervals
Usage
## S3 method for class 'ci'
summary(object, format = "[u;l]", se = FALSE, print = TRUE, ...)
Arguments
object |
Object of class ci containing point estimates and the corresponding confidence intervals |
format |
A string which indicates the format used for
confidence intervals. The string is passed to
|
se |
If |
print |
Logical: if |
... |
used to control formatting of numbers |
Details
This format of the confidence intervals is user-manipulable.
Value
Formatted confidence intervals
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
ci plot.ci format.ci
Examples
library(lava)
m <- lvm(Y~X)
m <- categorical(m,Y~X,K=4)
set.seed(4)
d <- sim(m,24)
ci.mean(Y~X,data=d)
x <- summary(ci.mean(Y~X,data=d),digits=2)
x
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=2)
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,se=TRUE)
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,handler="format")
x <- summary(ci.mean(Y~X,data=d),format="(u,l)",digits=1,handler="prettyNum")
Formatting regression tables
Description
Preparing regression results for publication
Usage
## S3 method for class 'regressionTable'
summary(object, show.missing = "ifany", print = TRUE, ...)
Arguments
object |
object obtained with |
show.missing |
Decide if number of missing values are shown.
Either logical or character. If |
print |
If |
... |
Used to control formatting of parameter estimates, confidence intervals and p-values. See examples. |
Value
List with two elements:
regressionTable: the formatted regression table (a data.frame)
rawTable: table with the unformatted values (a data.frame)
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
publish.glm publish.coxph
Examples
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
fit = coxph(Surv(time,status!=0)~age+sex+edema+log(bili)+log(albumin)+log(protime),
data=pbc)
u=summary(regressionTable(fit))
u$regressionTable
u$rawTable
summary(regressionTable(fit),handler="prettyNum")
summary(regressionTable(fit),handler="format")
summary(regressionTable(fit),handler="sprintf",digits=c(2,2),pValue.stars=TRUE)
summary(regressionTable(fit),handler="sprintf",digits=c(2,2),pValue.stars=TRUE,ci.format="(l,u)")
summary.subgroupAnalysis
Description
This function operates on a "subgroupAnalysis" object to produce a formatted table.
Usage
## S3 method for class 'subgroupAnalysis'
summary(
object,
digits = 3,
eps = 0.001,
subgroup.p = FALSE,
keep.digital = FALSE,
...
)
Arguments
object |
- a subgroupAnalysis object |
digits |
- number of digits for risk ratios |
eps |
- lowest value of p to be shown exactly, others will be "<eps" |
subgroup.p |
- present p-values for analyses in subgroups |
keep.digital |
- prevents formatting risk ratio and confidence limits. Useful for cases when further manipulations of rows and columns prior to adding a forest plot is relevant. |
... |
- not currently used |
Details
This function produces a formatted or unformatted table of a subgroupAnalysis object. A forest plot can be added with the plot function.
Value
A data.frame with formatted values for subgroups
Author(s)
Christian Torp-Pedersen
See Also
subgroupAnalysis
Examples
#load libraries
library(Publish)
library(survival)
library(data.table)
data(traceR) #get dataframe traceR
setDT(traceR)
traceR[,':='(wmi2=factor(wallMotionIndex<0.9,levels=c(TRUE,FALSE),
labels=c("bad","good")),
abd2=factor(abdominalCircumference<95, levels=c(TRUE,FALSE),
labels=c("slim","fat")))]
traceR[,sex:=as.factor(sex)] # all subgroup variables needs to be factor
traceR[observationTime==0,observationTime:=1]
# univariate analysis of smoking in subgroups of age and sex
# Basic model from randomised study - but observed for 12 years
fit_cox <- coxph(Surv(observationTime,dead)~treatment,data=traceR)
sub_cox <- subgroupAnalysis(fit_cox,traceR,treatment="treatment",
subgroup=c("smoking","sex","wmi2","abd2")) # subgroups as character string
summary(sub_cox)
Preparing univariate tables for publication
Description
Summary function for univariate table
Usage
## S3 method for class 'univariateTable'
summary(
object,
n = "inNames",
drop.reference = FALSE,
pvalue.stars = FALSE,
pvalue.digits = 4,
show.missing = c("ifany", "always", "never"),
show.pvalues,
show.totals,
...
)
Arguments
object |
|
n |
If not missing, show the number of subjects in each
column. If equal to |
drop.reference |
Logical or character (vector). Decide if line with reference
level should be suppressed for factors. If |
pvalue.stars |
If TRUE use |
pvalue.digits |
Passed to |
show.missing |
Decides if number of missing values are shown in table.
Defaults to |
show.pvalues |
Logical. If set to |
show.totals |
Logical. If set to |
... |
passed on to |
Details
Collects results of univariate table in a matrix.
Value
Summary table
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
data(Diabetes)
u <- univariateTable(gender~age+location+Q(BMI)+height+weight,
data=Diabetes)
summary(u)
summary(u,n=NULL)
summary(u,pvalue.digits=2,"age"="Age (years)","height"="Body height (cm)")
u2 <- univariateTable(location~age+AgeGroups+gender+height+weight,
data=Diabetes)
summary(u2)
summary(u2,drop.reference=TRUE)
## same but more flexible
summary(u2,drop.reference=c("binary"))
## same but even more flexible
summary(u2,drop.reference=c("gender"))
Fast summary of a univariate table
Description
First apply univariateTable then call summary.
Usage
sutable(...)
Arguments
... |
Unnamed arguments and are passed to |
Value
Summary table
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
summary.univariateTable univariateTable
Examples
data(Diabetes)
sutable(gender~age+location+Q(BMI)+height+weight,data=Diabetes,BMI="Body mass index (kg/m^2)")
2x2 table calculus for teaching
Description
2x2 table calculus for teaching
Usage
table2x2(
x,
digits = 1,
conf.level = 0.95,
stats = c("table", "rd", "rr", "or", "chisq", "fisher")
)
Arguments
x |
2x2 table |
digits |
rounding digits |
conf.level |
Confidence level used for constructing confidence intervals. Default is 0.95. |
stats |
subset or all of |
Details
2x2 table calculus for teaching
Value
see example
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
Examples
table2x2(table("marker"=rbinom(100,1,0.4),"response"=rbinom(100,1,0.1)))
table2x2(matrix(c(71,18,38,8),ncol=2),stats="table")
table2x2(matrix(c(71,18,38,8),ncol=2),stats=c("rr","fisher"))
trace data
Description
These data are from screening to the TRACE study, a comparison between the angiotensin converting enzyme inhibitor trandolapril and placebo ford large myocardial infarctions. A total of 6676 patients were screened for the study. Survival has been followed for the screened population for 16 years. The current data has been prepared for a poisson regression to examine survival. The data has been "split" in 0.5 year intervals (plitLexis function from Epi package) and then collapsed on all variables (aggregate function).
Format
A data frame with 1832 observations on the following 6 variables.
- Time
Time after myocardial infarction, in 6 months intervals
- smoking
Smoking status. A factor with levels (Never, Current, Previous)
- sex
A factor with levels (Female, Male)
- age
Age in years at the time of myocardial infarction
- ObsTime
Cumulative risk time in each split
- dead
Count of deaths
References
Kober et al 1995 Am. J. Cardiol 76,1-5
Examples
data(trace)
Units(trace,list("age"="years"))
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)
rtf <- regressionTable(fit,factor.reference = "inline")
summary(rtf)
publish(fit)
traceR data
Description
These data are from the TRACE randomised trial, a comparison between the angiotensin converting enzyme inhibitor trandolapril and placebo ford large myocardial infarctions. In all, 1749 patients were randomised. The current data are from a 15 year follow-up.
Format
A data frame with 1749 observations on the following variables.
- weight
Weight in kilo
- height
Height in meters
- abdominalCircumference
in centimeters
- seCreatinine
in mmol per liter
- wallMotionIndex
left ventricular function 0-2, 0 worst, 2 normal
- observationTime
time to death or censor
- age
age in years
- sex
0=female,1=male
- smoking
0=never,1=prior,2=current
- dead
0=censor,1=dead
- treatment
placebo or trandolapril
References
Kober et al 1995 NEJM 333,1670
Examples
data(trace)
Units(trace,list("age"="years"))
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)
rtf <- regressionTable(fit,factor.reference = "inline")
summary(rtf)
publish(fit)
Univariate table
Description
Categorical variables are summarized using counts and frequencies and compared .
Usage
univariateTable(
formula,
data = parent.frame(),
summary.format = "mean(x) (sd(x))",
Q.format = "median(x) [iqr(x)]",
freq.format = "count(x) (percent(x))",
column.percent = TRUE,
digits = c(1, 1, 3),
big.mark = ",",
short.groupnames,
compare.groups = TRUE,
show.totals = TRUE,
n = "inNames",
outcome = NULL,
...
)
Arguments
formula |
Formula specifying the grouping variable (strata) on the left hand side (can be omitted) and on the right hand side the variables for which to obtain (descriptive) statistics. |
data |
Data set in which formula is evaluated |
summary.format |
Format for the numeric (non-factor) variables. Default is mean (SD). If different formats are desired, either special Q can be used or the function is called multiple times and the results are rbinded. See examples. |
Q.format |
Format for quantile summary of numerical variables: Default is median (inter quartile range). |
freq.format |
Format for categorical variables. Default is count (percentage). |
column.percent |
Logical, if |
digits |
Number of digits |
big.mark |
For formatting large numbers (i.e., greater than 1,000). |
short.groupnames |
If |
compare.groups |
Method used to compare groups. If
|
show.totals |
If |
n |
If |
outcome |
Outcome data used to calculate p-values when
compare groups method is |
... |
saved as part of the result to be passed on to
|
Details
This function can generate the baseline demographic characteristics that forms table 1 in many publications. It is also useful for generating other tables of univariate statistics.
The result of the function is an object (list) which containe the various data
generated. In most applications the summary
function should be applied which generates
a data.frame with a (nearly) publication ready table. Standard manipulation can be
used to modify, add or remove columns/rows and for users not accustomed to R the table
generated can be exported to a text file which can be read by other software, e.g., via
write.csv(table,file="path/to/results/table.csv")
By default, continuous variables are summarized by means and standard deviations and compared with t-tests. When continuous variables are summarized by medians and interquartile ranges the Deviations from the above defaults are obtained when the arguments summary.format and freq.format are combined with suitable summary functions.
Value
List with one summary table element for each variable on the right hand side of formula.
The summary tables can be combined with rbind
. The function summary.univariateTable
combines the tables, and shows p-values in custom format.
Author(s)
Thomas A. Gerds
See Also
summary.univariateTable, publish.univariateTable
Examples
data(Diabetes)
library(data.table)
univariateTable(~age,data=Diabetes)
univariateTable(~gender,data=Diabetes)
univariateTable(~age+gender+ height+weight,data=Diabetes)
## same thing but less typing
utable(~age+gender+ height+weight,data=Diabetes)
## summary by location:
univariateTable(location~Q(age)+gender+height+weight,data=Diabetes)
## continuous variables marked with Q() are (by default) summarized
## with median (IQR) and kruskal.test (with two groups equivalent to wilcox.test)
## variables not marked with Q() are (by default) summarized
## with mean (sd) and anova.glm(...,test="Chisq")
## the p-value of anova(glm()) with only two groups is similar
## but not exactly equal to that of a t.test
## categorical variables are (by default) summarized by count
## (percent) and chi-square tests (\code{chisq.test}). When \code{compare.groups ='logistic'}
## anova(glm(...,family=binomial,test="Chisq")) is used to calculate p-values.
## export result to csv
table1 = summary(univariateTable(location~age+gender+height+weight,data=Diabetes),
show.pvalues=FALSE)
# write.csv(table1,file="~/table1.csv",rownames=FALSE)
## change labels and values
utable(location~age+gender+height+weight,data=Diabetes,
age="Age (years)",gender="Sex",
gender.female="Female",
gender.male="Male",
height="Body height (inches)",
weight="Body weight (pounds)")
## Use quantiles and rank tests for some variables and mean and standard deviation for others
univariateTable(gender~Q(age)+location+Q(BMI)+height+weight,
data=Diabetes)
## Factor with more than 2 levels
Diabetes$AgeGroups <- cut(Diabetes$age,
c(19,29,39,49,59,69,92),
include.lowest=TRUE)
univariateTable(location~AgeGroups+gender+height+weight,
data=Diabetes)
## Row percent
univariateTable(location~gender+age+AgeGroups,
data=Diabetes,
column.percent=FALSE)
## change of frequency format
univariateTable(location~gender+age+AgeGroups,
data=Diabetes,
column.percent=FALSE,
freq.format="percent(x) (n=count(x))")
## changing Labels
u <- univariateTable(location~gender+AgeGroups+ height + weight,
data=Diabetes,
column.percent=TRUE,
freq.format="count(x) (percent(x))")
summary(u,"AgeGroups"="Age (years)","height"="Height (inches)")
## more than two groups
Diabetes$frame=factor(Diabetes$frame,levels=c("small","medium","large"))
univariateTable(frame~gender+BMI+age,data=Diabetes)
Diabetes$sex=as.numeric(Diabetes$gender)
univariateTable(frame~sex+gender+BMI+age,
data=Diabetes,freq.format="count(x) (percent(x))")
## multiple summary formats
## suppose we want for some reason mean (range) for age
## and median (range) for BMI.
## method 1:
univariateTable(frame~Q(age)+BMI,
data=Diabetes,
Q.format="mean(x) (range(x))",
summary.format="median(x) (range(x))")
## method 2:
u1 <- summary(univariateTable(frame~age,
data=na.omit(Diabetes),
summary.format="mean(x) (range(x))"))
u2 <- summary(univariateTable(frame~BMI,
data=na.omit(Diabetes),
summary.format="median(x) (range(x))"))
publish(rbind(u1,u2),digits=2)
## Large number format (big.mark)
n=100000
dat=data.frame(id=1:n,z=rbinom(n,1,.3),x=factor(sample(1:8,size=n,replace=TRUE)))
u3 <- summary(univariateTable(z~x,
data=dat,big.mark=","))
u3