Title: | Distributions Derived from Normal Distribution |
Version: | 0.0.1 |
Description: | Presentation of distributions such as: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. For details on this method see: Sulewski (2019) <doi:10.1080/03610926.2019.1674871>, Sulewski (2021) <doi:10.1080/03610926.2020.1837881>, Sulewski (2021) <doi:10.1134/S1995080221120337>, Sulewski (2022) <"New members of the Johnson family of probability dis-tributions: properties and application">, Sulewski, Volodin (2022) <doi:10.1134/S1995080222110270>, Sulewski (2023) <doi:10.17713/ajs.v52i3.1434>. |
Depends: | R (≥ 3.5.0) |
Imports: | pracma |
License: | GPL-3 |
Language: | en-US |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Suggests: | testthat (≥ 3.0.0), knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2023-09-12 17:11:48 UTC; piotr |
Author: | Piotr Sulewski |
Maintainer: | Piotr Sulewski <piotr.sulewski@apsl.edu.pl> |
Repository: | CRAN |
Date/Publication: | 2023-09-13 09:50:05 UTC |
The list of package functions and their demonstration
Description
The PSDistr presents the following distribution derived from the normal distribution: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. The list of package functions is as follows:
Functions for the two-piece power normal distribution
Functions for the plasticizing component distribution
Functions for the DS normal distribution
#' @section Functions for the expnormal distribution:
#' @section Functions for the Sulewski plasticizing component distribution:
#' @section Functions for the easily changeable kurtosis distribution:
DS Normal Distribution
Description
Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.
Usage
ddsn(x, a, b, c, teta)
Arguments
x |
real argument |
a |
non-negative multipurpose parameter and a+b>0 |
b |
non-negative multipurpose parameter and a+b>0 |
c |
real multipurpose parameter |
teta |
real position parameter |
Details
Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)
Value
The function returns the value of the probability density function for the DS normal distribution
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian Uniwersity in Slupsk.
References
Sulewski P. (2021). DS Normal Distribution: properties and applications. Lobachevskii Journal of Mathematics 42(12), 2980-2999.
Examples
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
Easily Changeable Kurtosis Distribution
Description
Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.
Usage
deck(x, a, p)
Arguments
x |
-a<x<a for -1<p<0 or -a<=x<=a for p>=1 |
a |
positive scale parameter |
p |
shape parameter: p>-1 |
Details
Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)
Value
The function returns the value of the probability density function for the Easily Changeable Kurtosis Distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.
Examples
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
Expnormal Distribution
Description
Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.
Usage
den(x, a1, b1, a2, b2, c)
Arguments
x |
real argument |
a1 |
position parameter |
b1 |
positive scale parameter |
a2 |
position parameter |
b2 |
positive scale parameter |
c |
semi-fraction parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile functon see proposition (2.2) Random number generator see proposition (2.6)
Value
The function returns the value of the probability density function for the Expnormal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions:Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.
Examples
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
Plasticizing Component
Description
Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.
Usage
dpc(x, teta, s2, c)
Arguments
x |
real argument |
teta |
position parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile functon see formula (9) Random number generator see formula (23)
Value
The function returns the value of the probability density function for the plasticizing component.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2020). Normal Distribution with Plasticizing Component, Communications in Statistics ? Theory and Method 51(11), 3806-3835.
Examples
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
Sulewski Plasticizing Component Distribution
Description
Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.
Usage
dspc(x, a, b, c, d, teta)
Arguments
x |
real argument |
a |
multipurpose parameter (a>=0) |
b |
multipurpose parameter (b>=0, a+b>0) |
c |
multipurpose parameter |
d |
multipurpose parameter (d>=1) |
teta |
position parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile functon see formulas (2.3-2.5) Random number generator see proposition (4)
Value
The function returns the value of the probability density function for the Sulewski plasticizing component distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P., Volodin, A. (2022). Sulewski Plasticizing Component Distribution: properties and applications. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.
Examples
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
Two-Piece Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.
Usage
dtppn(x, teta, s1, s2, c)
Arguments
x |
real argument |
teta |
position parameter |
s1 |
positive scale parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile functon see formula (10) Random number generator see formula (21)
Value
The function returns the value of the probability density function for the two-piece power normal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2021). Two-Piece Power Normal Distribution, Communications in Statistics - Theory and Method 50(11), 2619-2639.
Examples
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
DS Normal Distribution
Description
Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.
Usage
pdsn(x, a, b, c, teta)
Arguments
x |
real argument |
a |
non-negative multipurpose parameter and a+b>0 |
b |
non-negative multipurpose parameter and a+b>0 |
c |
real multipurpose parameter |
teta |
real position parameter |
Details
Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)
Value
The function returns the value of the cumulative distribution function for the DS normal distribution
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski P. (2021). DS Normal Distribution: properties and applications. Lobachevskii Journal of Mathematics 42(12), 2980-2999.
Examples
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
Easily Changeable Kurtosis Distribution
Description
Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.
Usage
peck(x, a, p)
Arguments
x |
-a<x<a for -1<p<0 or -a<=x<=a for p>=1 |
a |
positive scale parameter |
p |
shape parameter: p>-1 |
Details
Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)
Value
The function returns the value of the cumulative distribution function for the Easily Changeable Kurtosis Distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.
Examples
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
Expnormal Distribution
Description
Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.
Usage
pen(x, a1, b1, a2, b2, c)
Arguments
x |
real argument |
a1 |
position parameter |
b1 |
positive scale parameter |
a2 |
position parameter |
b2 |
positive scale parameter |
c |
semi-fraction parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile functon see proposition (2.2) Random number generator see proposition (2.6)
Value
The function returns the value of the cumulative distribution function for the Expnormal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions:Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.
Examples
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
Plasticizing Component
Description
Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.
Usage
ppc(x, teta, s2, c)
Arguments
x |
real argument |
teta |
position parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile functon see formula (9) Random number generator see formula (23)
Value
The function returns the value of the cumulative distribution function for the plasticizing component.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2020). Normal Distribution with Plasticizing Component, Communications in Statistics ? Theory and Method 51(11), 3806-3835.
Examples
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
Sulewski Plasticizing Component Distribution
Description
Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.
Usage
pspc(x, a, b, c, d, teta)
Arguments
x |
real argument |
a |
multipurpose parameter (a>=0) |
b |
multipurpose parameter (b>=0, a+b>0) |
c |
multipurpose parameter |
d |
multipurpose parameter (d>=1) |
teta |
position parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile functon see formulas (2.3-2.5) Random number generator see proposition (4)
Value
The function returns the value of the cumulative distribution function for the Sulewski plasticizing component distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P., Volodin, A. (2022). Sulewski Plasticizing Component Distribution: properties and applications. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.
Examples
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
Two-Piece Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.
Usage
ptppn(x, teta, s1, s2, c)
Arguments
x |
real argument |
teta |
position parameter |
s1 |
positive scale parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile functon see formula (10) Random number generator see formula (21)
Value
The function returns the value of the cumulative distribution function for the two-piece power normal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2021). Two-Piece Power Normal Distribution, Communications in Statistics - Theory and Method 50(11), 2619-2639.
Examples
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
DS Normal Distribution
Description
Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.
Usage
qdsn(p, a, b, c, teta)
Arguments
p |
probability between 0 and 1 |
a |
non-negative multipurpose parameter and a+b>0 |
b |
non-negative multipurpose parameter and a+b>0 |
c |
real multipurpose parameter |
teta |
real position parameter |
Details
Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)
Value
The function returns the value of the quantile function for the DS normal distribution
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski P. (2021). DS Normal Distribution: properties and applications. Lobachevskii Journal of Mathematics 42(12), 2980-2999.
Examples
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
Easily Changeable Kurtosis Distribution
Description
Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.
Usage
qeck(q, a, p)
Arguments
q |
probability between 0 and 1 |
a |
positive scale parameter |
p |
shape parameter: p>-1 |
Details
Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)
Value
The function returns the value of the quantile function for the Easily Changeable Kurtosis Distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.
Examples
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
Expnormal Distribution
Description
Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.
Usage
qen(p, a1, b1, a2, b2, c)
Arguments
p |
probability between 0 and 1 |
a1 |
position parameter |
b1 |
positive scale parameter |
a2 |
position parameter |
b2 |
positive scale parameter |
c |
semi-fraction parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile functon see proposition (2.2) Random number generator see proposition (2.6)
Value
The function returns the value of the quantile function for the Expnormal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions:Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.
Examples
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
Plasticizing Component
Description
Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.
Usage
qpc(p, teta, s2, c)
Arguments
p |
probability between 0 and 1 |
teta |
position parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile functon see formula (9) Random number generator see formula (23)
Value
The function returns the value of the quantile function for the plasticizing component.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
SSulewski, P. (2020). Normal Distribution with Plasticizing Component, Communications in Statistics ? Theory and Method 51(11), 3806-3835.
Examples
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
Sulewski Plasticizing Component Distribution
Description
Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.
Usage
qspc(p, a, b, c, d, teta)
Arguments
p |
probability between 0 and 1 |
a |
multipurpose parameter (a>=0) |
b |
multipurpose parameter (b>=0, a+b>0) |
c |
multipurpose parameter |
d |
multipurpose parameter (d>=1) |
teta |
position parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile functon see formulas (2.3-2.5) Random number generator see proposition (4)
Value
The function returns the value of the quantile function for the Sulewski plasticizing component distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P., Volodin, A. (2022). Sulewski Plasticizing Component Distribution: properties and applications. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.
Examples
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
Two-Piece Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.
Usage
qtppn(p, teta, s1, s2, c)
Arguments
p |
probability between 0 and 1 |
teta |
position parameter |
s1 |
positive scale parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile functon see formula (10) Random number generator see formula (21)
Value
The function returns the value of the quantile function for the two-piece power normal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2021). Two-Piece Power Normal Distribution, Communications in Statistics - Theory and Method 50(11), 2619-2639.
Examples
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
DS Normal Distribution
Description
Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.
Usage
rdsn(n, a, b, c, teta)
Arguments
n |
positive number of observations |
a |
non-negative multipurpose parameter and a+b>0 |
b |
non-negative multipurpose parameter and a+b>0 |
c |
real multipurpose parameter |
teta |
real position parameter |
Details
Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)
Value
The function returns random generator values for the DS normal distribution
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski P. (2021). DS Normal Distribution: properties and applications. Lobachevskii Journal of Mathematics 42(12), 2980-2999.
Examples
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
Easily Changeable Kurtosis Distribution
Description
Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.
Usage
reck(n, a, p)
Arguments
n |
positive number of observations |
a |
positive scale parameter |
p |
shape parameter: p>-1 |
Details
Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)
Value
The function returns random generation values for the Easily Changeable Kurtosis Distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.
Examples
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
Expnormal Distribution
Description
Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.
Usage
ren(n, a1, b1, a2, b2, c)
Arguments
n |
positive number of observations |
a1 |
position parameter |
b1 |
positive scale parameter |
a2 |
position parameter |
b2 |
positive scale parameter |
c |
semi-fraction parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile functon see proposition (2.2) Random number generator see proposition (2.6)
Value
The function returns random generator values for the Expnormal distribution
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions:Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.
Examples
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
Plasticizing Component
Description
Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.
Usage
rpc(n, teta, s2, c)
Arguments
n |
positive number of observations |
teta |
position parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile functon see formula (9) Random number generator see formula (23)
Value
The function returns random generator values for the plasticizing component.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2020). Normal Distribution with Plasticizing Component, Communications in Statistics ? Theory and Method 51(11), 3806-3835.
Examples
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
Sulewski Plasticizing Component Distribution
Description
Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.
Usage
rspc(n, a, b, c, d, teta)
Arguments
n |
positive number of observations |
a |
multipurpose parameter (a>=0) |
b |
multipurpose parameter (b>=0, a+b>0) |
c |
multipurpose parameter |
d |
multipurpose parameter (d>=1) |
teta |
position parameter |
Details
Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile functon see formulas (2.3-2.5) Random number generator see proposition (4)
Value
The function returns random generator values for the Sulewski plasticizing component distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P., Volodin, A. (2022). Sulewski Plasticizing Component Distribution: properties and applications. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.
Examples
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
Two-Piece Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.
Usage
rtppn(n, teta, s1, s2, c)
Arguments
n |
positive number of observations |
teta |
position parameter |
s1 |
positive scale parameter |
s2 |
positive scale parameter |
c |
shape parameter (c>=1) |
Details
Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile functon see formula (10) Random number generator see formula (21)
Value
The function returns random generator values for the two-piece power normal distribution.
Author(s)
Piotr Sulewski, piotr.sulewski@upsl.edu.pl, Pomeranian UNiwersity in Slupsk.
References
Sulewski, P. (2021). Two-Piece Power Normal Distribution, Communications in Statistics - Theory and Method 50(11), 2619-2639.
Examples
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)