The metaRVM package uses a YAML file to configure the
model parameters. This vignette describes the structure of the YAML
configuration file, starting with a simple example and progressively
introducing more advanced features.
A minimal configuration file specifies the data sources, simulation settings, and disease parameters with fixed scalar values.
run_id: SimpleRun
population_data:
mapping: data/demographic_mapping.csv
initialization: data/population_init.csv
vaccination: data/vaccination.csv
mixing_matrix:
weekday_day: data/m_weekday_day.csv
weekday_night: data/m_weekday_night.csv
weekend_day: data/m_weekend_day.csv
weekend_night: data/m_weekend_night.csv
disease_params:
ts: 0.5
tv: 0.25
ve: 0.4
dv: 180
dp: 1
de: 3
da: 5
ds: 6
dh: 8
dr: 180
pea: 0.3
psr: 0.95
phr: 0.97
simulation_config:
start_date: 01/01/2025 # m/d/Y
length: 90
nsim: 1
random_seed: 42run_id: A unique name for your
simulation.population_data: Paths to CSV files
for population demographics, initial state, and vaccination
schedules.mixing_matrix: Paths to CSV files
defining contact patterns for different times of the week.disease_params: Disease
characteristics. In this example, all parameters are single, fixed
values.simulation_config: Settings for the
simulation run, such as start date, duration, and number of
simulations.The metaRVM package requires several CSV files to be
structured in a specific way. Below are the descriptions for each of the
required input files, along with examples of what they should look
like.
mapping: The population mapping file
connects population IDs to demographic information. It must contain the
following columns:
population_id: A unique identifier for each
subpopulation, set of natural numbers 1, 2, 3, …age: The age group of the subpopulation (e.g., “0-4”,
“65+”).race: The race or ethnicity of the subpopulation.zone: The healthcare zone or geographic region of the
subpopulation.Example of a population mapping file:
#> First 10 rows of demographic_mapping_n24.csv:
#> population_id age race zone
#> 1 1 0-17 A 11
#> 2 2 18-64 A 11
#> 3 3 65+ A 11
#> 4 4 0-17 B 11
#> 5 5 18-64 B 11
#> 6 6 65+ B 11
#> 7 7 0-17 C 11
#> 8 8 18-64 C 11
#> 9 9 65+ C 11
#> 10 10 0-17 D 11
#>
#> ... (24 total rows)
initialization: This file specifies
the initial state of the population for the simulation. It must contain
the following columns:
population_id: Identifier matching the mapping
file.N: The total number of individuals in each
subpopulation.S0: The initial number of susceptible individuals.I0: The initial number of symptomatic infected
individuals.V0: The initial number of vaccinated individuals.R0: The initial number of recovered individuals.Example of a population initialization file:
#> First 10 rows of population_init_n24.csv:
#> population_id N S0 I0 V0 R0
#> 1 1 30742 30711 31 0 7
#> 2 2 41429 41388 41 0 9
#> 3 3 3321 3318 3 0 0
#> 4 4 70138 70068 70 0 6
#> 5 5 12298 12286 12 0 32
#> 6 6 11549 11537 12 0 0
#> 7 7 84178 84094 84 0 13
#> 8 8 113521 113407 114 0 15
#> 9 9 11924 11912 12 0 0
#> 10 10 199686 199486 200 0 14
#>
#> ... (24 total rows)
vaccination: The vaccination schedule
file contains the number of vaccinations administered over time. The
first column must be date in MM/DD/YYYY
format, followed by columns for each subpopulation in the same order
that they are assigned a population_id in the mapping
file.Example of a vaccination schedule file:
#> First 10 rows of vaccination_n24.csv:
#> date v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17
#> 1 09/16/2023 0 0 0 0 0 0 11 5 4 8 6 4 2 5 1 8 11
#> 2 09/23/2023 5 12 1 11 7 2 180 187 99 362 293 72 311 163 24 519 203
#> 3 09/30/2023 3 5 2 19 10 3 198 235 88 424 364 89 445 255 36 625 251
#> 4 10/07/2023 20 14 15 46 19 8 403 385 124 846 580 187 675 389 45 1242 347
#> 5 10/14/2023 28 29 19 81 50 7 471 425 105 997 511 162 727 400 42 1351 313
#> 6 10/21/2023 37 55 24 110 43 8 378 499 115 980 483 160 623 511 39 1212 317
#> 7 10/28/2023 28 43 19 86 48 16 339 464 88 809 438 126 548 411 52 1090 287
#> 8 11/04/2023 22 53 19 91 49 28 329 391 70 765 431 147 522 391 22 956 259
#> 9 11/11/2023 36 62 21 110 60 10 337 396 87 769 414 148 575 425 39 966 199
#> 10 11/18/2023 40 65 14 102 55 14 340 431 97 875 392 118 513 417 28 1041 231
#> v18 v19 v20 v21 v22 v23 v24
#> 1 5 0 0 0 0 0 3
#> 2 113 2 3 26 4 13 10
#> 3 119 4 22 27 2 18 27
#> 4 193 8 41 50 4 70 44
#> 5 161 10 98 217 36 123 98
#> 6 202 18 160 214 51 149 168
#> 7 152 32 199 273 60 153 267
#> 8 126 26 168 239 33 149 225
#> 9 149 26 197 255 52 142 275
#> 10 141 26 212 242 50 153 191
#>
#> ... (51 total rows)
#>
#> Note: Columns represent vaccination counts for each population_id (1-24)
The mixing matrix files define the contact patterns between different subpopulations. Each file should be a CSV without a header, where the rows and columns correspond to the subpopulations in the same order as the population mapping file. The values in the matrix represent the proportion of time that individuals from one subpopulation spend with individuals from another. The sum of each row must equal 1.
Example of a mixing matrix file (weekday day):
#> First 10 rows and 10 columns of m_weekday_day.csv:
#> V1 V2 V3 V4 V5 V6
#> 1 0.860000000 0.0010475811 0.003377249 0.001710217 0.0011920273 0.006571116
#> 2 0.003611954 0.9100000000 0.001328864 0.003596329 0.0027309903 0.004173784
#> 3 0.001344397 0.0072452422 0.870000000 0.002513688 0.0050834111 0.009789632
#> 4 0.006689671 0.0005482346 0.004749909 0.920000000 0.0070678313 0.001806128
#> 5 0.007740689 0.0039632387 0.004643154 0.001091787 0.8700000000 0.009791262
#> 6 0.006379144 0.0032865609 0.003432134 0.001761560 0.0071883914 0.890000000
#> 7 0.001444749 0.0064237517 0.002656119 0.001968115 0.0043013059 0.001206245
#> 8 0.002179355 0.0070411463 0.001587234 0.003439760 0.0033650992 0.006414028
#> 9 0.005390480 0.0066530217 0.005482305 0.003007641 0.0006105881 0.003145261
#> 10 0.001666809 0.0029011017 0.008534104 0.001698315 0.0098720801 0.004586367
#> V7 V8 V9 V10
#> 1 1.464237e-02 0.0143653234 0.0118876071 0.0080742019
#> 2 6.528305e-03 0.0041375710 0.0057636782 0.0054420004
#> 3 8.763376e-03 0.0005057071 0.0007488488 0.0073198670
#> 4 2.822754e-04 0.0070548564 0.0009509153 0.0012611329
#> 5 1.004983e-02 0.0041073157 0.0088236656 0.0006445009
#> 6 3.144937e-05 0.0085528740 0.0063335264 0.0023219191
#> 7 9.200000e-01 0.0035656434 0.0070237063 0.0042256901
#> 8 4.098307e-03 0.9100000000 0.0067478716 0.0100518811
#> 9 9.597300e-04 0.0002268853 0.9200000000 0.0009418937
#> 10 5.236045e-03 0.0065183293 0.0012107981 0.8700000000
#>
#> Matrix dimensions: 24 x 24
#> Row sums (should all equal 1):
#> [1] 1 1 1 1 1 1 1 1 1 1
Below is a list of the disease parameters used in
metaRVM:
ts: Transmission rate for symptomatic individuals in
the susceptible population.tv: Transmission rate for symptomatic individuals in
the vaccinated population.ve: Vaccine effectiveness (proportion, range: [0,
1]).dv: Mean duration (in days) in the vaccinated state
before immunity wanes.dp: Mean duration (in days) in the presymptomatic
infectious state.de: Mean duration (in days) in the exposed state.da: Mean duration (in days) in the asymptomatic
infectious state.ds: Mean duration (in days) in the symptomatic
infectious state.dh: Mean duration (in days) in the hospitalized
state.dr: Mean duration (in days) of immunity in the
recovered state.pea: Proportion of exposed individuals who become
asymptomatic (vs. presymptomatic) (range: 0-1).psr: Proportion of symptomatic individuals who recover
directly (vs. requiring hospitalization) (range: 0-1).phr: Proportion of hospitalized individuals who recover
(vs. die) (range: 0-1).Instead of fixed values, you can define disease parameters using
statistical distributions. This is useful for capturing uncertainty in
the parameters. metaRVM supports uniform and
lognormal distributions.
Here is an example of defining ve, da,
ds, and dh with distributions:
disease_params:
ts: 0.7
tv: 0.35
ve:
dist: uniform
min: 0.29
max: 0.53
dv: 158
dp: 1
de: 3
da:
dist: uniform
min: 3
max: 7
ds:
dist: uniform
min: 5
max: 7
dh:
dist: lognormal
mu: 8
sd: 8.9
dr: 187
pea: 0.333
psr: 0.95
phr: 0.97uniform distribution, you must specify
min and max values.lognormal distribution, you must specify
mu and sd (mean and standard deviation on the
log scale).metaRVM allows you to specify different disease
parameters for various demographic subgroups using the
sub_disease_params section. These subgroup-specific
parameters will override the global parameters defined in
disease_params.
It is crucial that the demographic categories (e.g.,
age) and the specific values (e.g., 0-4,
5-11) used in this section exactly match the corresponding
columns and values in the population mapping CSV file specified under
population_data.
The following example defines different parameters for different age groups:
sub_disease_params:
age:
0-4:
dh: 4
pea: 0.08
psr: 0.9303
phr: 0.9920
5-11:
dh: 4
pea: 0.08
psr: 0.9726
phr: 0.9920
12-17:
dh: 4
pea: 0.08
psr: 0.9726
phr: 0.9920
18-49:
ts: 0.01
dh: 6
pea: 0.12
psr: 0.9439
phr: 0.9690
50-64:
dh: 6
pea: 0.05
psr: 0.9894
phr: 0.9425
65+:
dh: 7
pea: 0.05
psr: 0.9091
phr: 0.9227In this configuration, individuals in the “0-4” age group will have a
dh (duration of hospitalization) of 4, overriding any
global dh value. Similarly, the transmission rate
ts for the “18-49” group is set to 0.01.
For long-running simulations, it is useful to save the state of the
model at intermediate points. This is known as checkpointing.
metaRVM allows you to save checkpoints and restore a
simulation from a saved state.
To enable checkpointing, you need to add the
checkpoint_dir and optionally checkpoint_dates
to the simulation_config section of your YAML file.
checkpoint_dir: The directory where checkpoint files
will be saved.checkpoint_dates: A list of dates (in
MM/DD/YYYY format) on which to save a checkpoint. If this
is not provided, a single checkpoint will be saved at the end of the
simulation.Here is an example of how to configure checkpointing:
To restore a simulation from a checkpoint file, use the
restore_from parameter in the
simulation_config section. This will initialize the model
with the state saved in the specified checkpoint file.
simulation_config:
start_date: 01/30/2025 # Should be the next date of the checkpoint date
length: 60 # Remaining simulation length
nsim: 10
restore_from: "path/to/checkpoints/checkpoint_2025-01-30_instance_1.Rda"When restoring, the start_date should correspond to the
next date of the checkpoint, and the length should be the
remaining duration of the simulation. Note that each instance of a
simulation must be restored individually.