Type: | Package |
Title: | Read and Analyze 'MetIDQ™' Software Output Files |
Version: | 1.1.0 |
Maintainer: | Nils Mechtel <nils.mech@gmail.com> |
Depends: | R (≥ 4.0.0) |
Imports: | SummarizedExperiment, openxlsx, stringr, dplyr, tidyr, tibble, agricolae, ggplot2, ggrepel, utils, rlang, data.table, S4Vectors, viridis, viridisLite, plotly, limma |
Description: | The 'MetAlyzer' S4 object provides methods to read and reformat metabolomics data for convenient data handling, statistics and downstream analysis. The resulting format corresponds to input data of the Shiny app 'MetaboExtract' (https://www.metaboextract.shiny.dkfz.de/MetaboExtract/). |
License: | GPL-3 |
Encoding: | UTF-8 |
Language: | en-US |
RoxygenNote: | 7.3.2 |
Suggests: | rmarkdown, knitr |
VignetteBuilder: | knitr |
URL: | https://github.com/nilsmechtel/MetAlyzer |
BugReports: | https://github.com/nilsmechtel/MetAlyzer/issues |
NeedsCompilation: | no |
Packaged: | 2024-12-06 11:18:54 UTC; luisherfurth |
Author: | Nils Mechtel |
Repository: | CRAN |
Date/Publication: | 2024-12-06 14:00:02 UTC |
Open file and read data
Description
This function creates a SummarizedExperiment (SE) from the given 'MetIDQ' output Excel sheet: metabolites (rowData), meta data (colData), concentration data (assay), quantification status(assay) The column "Sample Type" and the row "Class" are used as anchor cells in the Excel sheet and are therefore a requirement.
Usage
MetAlyzer_dataset(
file_path,
sheet = 1,
status_list = list(Valid = c("#B9DE83", "#00CD66"), LOQ = c("#B2D1DC", "#7FB2C5",
"#87CEEB"), LOD = c("#A28BA3", "#6A5ACD"), `ISTD Out of Range` = c("#FFF099",
"#FFFF33"), Invalid = "#FFFFCC", Incomplete = c("#CBD2D7", "#FFCCCC")),
silent = FALSE
)
Arguments
file_path |
A character specifying the file path to the Excel file. |
sheet |
A numeric index specifying which sheet of the Excel file to use. |
status_list |
A list of HEX color codes for each quantification status. |
silent |
If TRUE, mute any print command. |
Value
A Summarized Experiment object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
Aggregate data
Description
This function reshapes conc_values, quant_status, metatabolites and sample IDs and combines them into a tibble data frame for filtering with dplyr and plotting with 'ggplot2'. "aggregated_data" is grouped by metabolites.
Usage
aggregate_data(metabolites, meta_data, conc_values, quant_status, status_vec)
Arguments
metabolites |
metabolites MetAlyzer object |
meta_data |
Meta_data of the MetAlyzer object |
conc_values |
conc_values of a MetAlyzer object |
quant_status |
quant_status of a MetAlyzer object |
status_vec |
A vector of quantification status |
Get Aggregated Data
Description
This function returns the tibble "aggregated_data".
Usage
aggregatedData(metalyzer_se)
Arguments
metalyzer_se |
SummarizedExperiment |
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
aggregatedData(metalyzer_se)
Perform an ANOVA
Description
This function filters based on the filter vector valid_vec, performs a one-way ANOVA and adds the column Group to aggregated_data with the results of a Tukey post-hoc test
Usage
calc_anova(c_vec, d_vec)
Arguments
c_vec |
A character vector containing the categorical variables |
d_vec |
A numeric vector containing the dependent variables |
One-way ANOVA
Description
This method performs a one-way ANOVA on the grouped aggregated_data (the categorical variable is removed from grouping first). The vector of the categorical variable needs to have at least two levels after removing NAs from the dependent variable vector. Otherwise a vector of NA is returned. A Tukey post-hoc test is then used to determine group names, starting with "A" followed by further letters. These group names are added to aggregated_data in the column ANOVA_Group. Thereby, metabolites can be identified which are significantly higher in one or more of the categorical variable compared to all other for each metabolite.
Usage
calculate_anova(
metalyzer_se,
categorical,
groups = NULL,
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
Arguments
metalyzer_se |
A Metalyzer object |
categorical |
A column defining the categorical variable |
groups |
A vector of column names of aggregated_data to calculate the ANOVA group wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing grouping of aggregated_data. |
impute_perc_of_min |
A numeric value below 1 |
impute_NA |
Logical value whether to impute NA values |
Value
A data frame containing the log2 fold change for each metabolite
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- renameMetaData(
metalyzer_se,
Extraction_Method = "Sample Description"
)
# reduced to only 'Acylcarnitines' (first metabolic class) for simplicity
drop_vec = unique(metalyzer_se@elementMetadata$metabolic_classes)[2:24]
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = drop_vec
)
metalyzer_se <- filterMetaData(
metalyzer_se,
Tissue == "Drosophila"
)
metalyzer_se <- calculate_anova(
metalyzer_se,
categorical = "Extraction_Method",
groups = c("Metabolite"),
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
Add mean, SD and CV
Description
This function calculates the mean, standard deviation (SD) and the coefficient of variation (CV) for each group and adds them to aggregated_data.
Usage
calculate_cv(
metalyzer_se,
groups = NULL,
cv_thresholds = c(0.1, 0.2, 0.3),
na.rm = TRUE
)
Arguments
metalyzer_se |
A Metalyzer object |
groups |
A vector of column names of aggregated_data to calculate mean, SD and CV group wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing grouping of aggregated_data. |
cv_thresholds |
A numeric vector of upper thresholds (CV <= t) between 0 and 1 for CV categorization. |
na.rm |
a logical evaluating to TRUE or FALSE indicating whether NA values should be stripped before the computation proceeds. |
Value
An updated aggregated_data tibble data frame
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- renameMetaData(
metalyzer_se,
Extraction_Method = "Sample Description"
)
metalyzer_se <- filterMetaData(
metalyzer_se,
Tissue == "Drosophila"
)
metalyzer_se <- calculate_cv(
metalyzer_se,
groups = c("Tissue", "Extraction_Method", "Metabolite"),
cv_thresholds = c(0.1, 0.2, 0.3),
na.rm = TRUE
)
Calculate log2 fold change
Description
This function calculates log2(FC), p-values, and adjusted p-values of the data using limma.
Usage
calculate_log2FC(
metalyzer_se,
categorical,
impute_perc_of_min = 0.2,
impute_NA = FALSE
)
Arguments
metalyzer_se |
A Metalyzer object |
categorical |
A column specifying the two groups |
impute_perc_of_min |
A numeric value below 1 |
impute_NA |
Logical value whether to impute NA values |
Value
A data frame containing the log2 fold change for each metabolite
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = FALSE
)
Impute aggregated data
Description
This function imputes zero concentration values with a percentage of the minimal positive value. If all values are zero or NA, they are set to NA. The imputed values are added to plotting_data in an extra column imputed_Conc.
Usage
data_imputation(metalyzer_se, impute_perc_of_min, impute_NA)
Arguments
metalyzer_se |
A MetAlyzer object |
impute_perc_of_min |
A numeric value between 0 and 1. Percentage of the minimal positive value, that is taken for imputation |
impute_NA |
Logical value whether to impute NA values |
Transform aggregated data
Description
This function performs a transformation of imputed concentration values (imputed_Conc) with a given function. NA values are skipped. The transformed values are added to aggregated_data in an extra column transf_Conc.
Usage
data_transformation(metalyzer_se)
Arguments
metalyzer_se |
a MetAlyzer object |
Value
An updated aggregated_data tibble data frame
Get example extraction data
Description
This function returns the extraction_data_MxP_Quant_500.xlsx file path.
Usage
example_extraction_data()
Value
extraction_data_MxP_Quant_500.xlsx file path
Examples
fpath <- example_extraction_data()
Get example meta data
Description
This function returns the data frame loaded from example_meta_data.RDS.
Usage
example_meta_data()
Value
data frame loaded from example_meta_data.RDS
Examples
fpath <- example_meta_data()
Get example mutation data
Description
This function returns the mutation_data_MxP_Quant_500_XL.xlsx file path.
Usage
example_mutation_data_xl()
Value
mutation_data_MxP_Quant_500_XL.xlsx file path
Examples
fpath <- example_mutation_data_xl()
Add column to aggregated_data
Description
This function adds a column to the aggregated_data tibble by using information from the meta data.
Usage
expand_aggregated_data(metalyzer_se, meta_data_column)
Arguments
metalyzer_se |
A Metalyzer object |
meta_data_column |
A column from meta data |
Value
An updated Metalyzer object
Export filtered raw data as csv
Description
This function exports the filtered raw data in the CSV format.
Usage
exportConcValues(metalyzer_se, ..., file_path = "metabolomics_data.csv")
Arguments
metalyzer_se |
SummarizedExperiment |
... |
Additional columns from meta_data |
file_path |
file path |
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
output_file <- file.path(tempdir(), "metabolomics_data.csv")
exportConcValues(
metalyzer_se,
`Sample Description`,
Tissue,
file_path = output_file
)
unlink(output_file)
Filter meta data
Description
This function updates the "Filter" column in meta_data to filter out samples.
Usage
filterMetaData(metalyzer_se, ..., inplace = FALSE)
Arguments
metalyzer_se |
SummarizedExperiment |
... |
Use ´col_name´ and condition to filter selected variables. |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
Value
An updated SummarizedExperiment
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- filterMetaData(metalyzer_se, !is.na(Tissue))
metalyzer_se <- filterMetaData(metalyzer_se, `Sample Description` %in% 1:6)
# or
filterMetaData(metalyzer_se, !is.na(Tissue), inplace = TRUE)
filterMetaData(metalyzer_se, `Sample Description` %in% 1:6, inplace = TRUE)
Filter metabolites
Description
This function filters out certain classes or metabolites of the metabolites vector. If aggregated_data is not empty, metabolites and class will also be filtered here.
Usage
filterMetabolites(
metalyzer_se,
drop_metabolites = c("Metabolism Indicators"),
drop_NA_concentration = FALSE,
drop_quant_status = NULL,
min_percent_valid = NULL,
valid_status = c("Valid", "LOQ"),
per_group = NULL,
inplace = FALSE
)
Arguments
metalyzer_se |
SummarizedExperiment |
drop_metabolites |
A character vector defining metabolite classes or individual metabolites to be removed |
drop_NA_concentration |
A boolean whether to drop metabolites which have any NAs in their concentration value |
drop_quant_status |
A character, vector of characters or list of characters specifying which quantification status to remove. Metabolites with at least one quantification status of this vector will be removed. |
min_percent_valid |
A numeric lower threshold between 0 and 1 (t less than or equal to x) to remove invalid metabolites that do not meet a given percentage of valid measurements per group (default per Metabolite). |
valid_status |
A character vector that defines which quantification status is considered valid. |
per_group |
A character vector of column names from meta_data that will be used to split each metabolite into groups. The threshold 'min_percent_valid' will be applied for each group. The selected columns from meta_data will be added to aggregated_data. |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
Value
An updated SummarizedExperiment
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
drop_metabolites <- c("C0", "C2", "C3", "Metabolism Indicators",
inplace = TRUE
)
metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites)
# or
filterMetabolites(metalyzer_se, drop_metabolites, inplace = TRUE)
Get data range
Description
This function extracts rows and column indices to slice the .full_sheet into metabolites, conc_values and meta_data.
Usage
get_data_range(full_sheet)
Arguments
full_sheet |
full_sheet |
Get log2FC Data
Description
This function returns the tibble "log2FC".
Usage
log2FC(metalyzer_se)
Arguments
metalyzer_se |
SummarizedExperiment |
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
log2FC(metalyzer_se)
MetAlyzer logo
Description
This function prints "MetAlyzer" as an ASCII logo
Usage
metalyzer_ascii_logo()
Get MetAlyzer colors
Description
This function returns the vector loaded from metalyzer_colors.RDS.
Usage
metalyzer_colors()
Value
data frame loaded from metalyzer_colors.RDS
Examples
fpath <- metalyzer_colors()
Open Excel file
Description
This function opens the given MetIDQ output Excel file and reads the full given sheet.
Usage
open_file(starter_list)
Arguments
starter_list |
contains the file path and the sheet index |
Get pathway file path
Description
This function returns the pathway.xlsx file path.
Usage
pathway()
Value
pathway.xlsx file path
Examples
fpath <- pathway()
Plot log2 fold change
Description
This method plots the log2 fold change for each metabolite.
Usage
plot_log2FC(
metalyzer_se,
signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01),
hide_labels_for = c(),
class_colors = "MetAlyzer",
polarity_file = "MxPQuant500",
vulcano = FALSE
)
Arguments
metalyzer_se |
A Metalyzer object |
signif_colors |
signif_colors |
hide_labels_for |
vector of Metabolites or Classes for which no labels are printed |
class_colors |
class_colors |
polarity_file |
polarity_file |
vulcano |
boolean value to plot a vulcano plot |
Value
ggplot object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
# p_vulcano <- plot_log2FC(metalyzer_se, vulcano=TRUE)
# p_fc <- plot_log2FC(metalyzer_se, vulcano=FALSE)
Plot Pathway Network
Description
This function plots the log2 fold change for each metabolite and visualizes it, in a pathway network.
Usage
plot_network(
metalyzer_se,
q_value = 0.05,
metabolite_text_size = 3,
connection_width = 0.75,
pathway_text_size = 6,
pathway_width = 4,
scale_colors = c("green", "black", "magenta")
)
Arguments
metalyzer_se |
A Metalyzer object |
q_value |
The q-value threshold for significance |
metabolite_text_size |
The text size of metabolite labels |
connection_width |
The line width of connections between metabolites |
pathway_text_size |
The text size of pathway annotations |
pathway_width |
The line width of pathway-specific connection coloring |
scale_colors |
A vector of length 3 with colors for low, mid and high of the gradient. |
Value
ggplot object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = FALSE
)
network <- plot_network(metalyzer_se, q_value = 0.05)
Plotly Log2FC Network Plot
Description
This function returns a list with interactive networkplot based on log2 fold change data.
Usage
plotly_network(
metalyzer_se,
q_value = 0.05,
metabolite_node_size = 11,
connection_width = 1.25,
pathway_text_size = 20,
pathway_width = 10,
plot_height = 800
)
Arguments
metalyzer_se |
A MetAlyzer Object |
q_value |
A numeric value specifying the cutoff for q-value |
metabolite_node_size |
The text size of the metabolite Nodes |
connection_width |
The line width of connections between metabolites |
pathway_text_size |
The text size of pathway annotations |
pathway_width |
The line width of pathway-specific connection coloring |
plot_height |
The height of the Plot in pixel [px] |
Value
plotly object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = FALSE
)
p_network <- plotly_network(metalyzer_se, q_value = 0.05)
Plotly Log2FC Scatter Plot
Description
This function returns a list with an interactive scatterplot based on log2 fold change data and a comprehensive Legend.
Usage
plotly_scatter(
metalyzer_se,
signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01),
class_colors = metalyzer_colors()
)
Arguments
metalyzer_se |
A Metalyzer object |
signif_colors |
signif_colors |
class_colors |
A csv file containing class colors hexcodes |
Value
plotly object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
p_scatter <- plotly_scatter(metalyzer_se)
Plotly Log2FC Vulcano Plot
Description
This function returns a list with interactive vulcanoplot based on log2 fold change data.
Usage
plotly_vulcano(
metalyzer_se,
cutoff_y = 0.05,
cutoff_x = 1.5,
class_colors = metalyzer_colors()
)
Arguments
metalyzer_se |
A Metalyzer object |
cutoff_y |
A numeric value specifying the cutoff for q-value |
cutoff_x |
A numeric value specifying the cutoff for log2 fold change |
class_colors |
A csv file containing class colors hexcodes |
Value
plotly object
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
metalyzer_se,
drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
metalyzer_se,
Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
metalyzer_se,
categorical = "Mutant_Control",
impute_perc_of_min = 0.2,
impute_NA = TRUE
)
p_vulcano <- plotly_vulcano(metalyzer_se,
cutoff_y = 0.05,
cutoff_x = 1.5)
Get polarity file path
Description
This function returns the polarity.csv file path.
Usage
polarity()
Value
polarity.csv file path
Examples
fpath <- polarity()
Read Named Regions
Description
This function reads in the named regions of an excel file.
Usage
read_named_region(file_path, named_region)
Arguments
file_path |
The file path of the file |
named_region |
The region name u want to read in |
Read quantification status
Description
This function gets the background color of each cell in full_sheet and assigns it to the corresponding quantification status.
Usage
read_quant_status(
starter_list,
sheet_dim,
data_ranges,
metabolites,
status_list,
silent
)
Arguments
starter_list |
starter_list |
sheet_dim |
sheet_dim |
data_ranges |
data_ranges |
metabolites |
metabolites |
status_list |
status_list |
silent |
silent |
Rename meta data
Description
This function renames a column of meta_data.
Usage
renameMetaData(metalyzer_se, ..., inplace = FALSE)
Arguments
metalyzer_se |
SummarizedExperiment |
... |
Use new_name = old_name to rename selected variables |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
Value
An updated SummarizedExperiment
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- renameMetaData(
metalyzer_se,
Method = `Sample Description`
)
# or
renameMetaData(metalyzer_se, Model_Organism = Tissue, inplace = TRUE)
Threshold CV
Description
This function assigns a CV value according to a vector of thresholds.
Usage
set_threshold(x, cv_threshs)
Arguments
x |
A CV value |
cv_threshs |
A numeric vector of thresholds |
Slice concentration values
Description
This function slices measurements from .full_sheet into conc_values.
Usage
slice_conc_values(full_sheet, data_ranges, metabolites)
Arguments
full_sheet |
full_sheet |
data_ranges |
data_ranges |
metabolites |
metabolites |
Slice meta data
Description
This function slices meta data from .full_sheet into meta_data.
Usage
slice_meta_data(full_sheet, data_ranges)
Arguments
full_sheet |
full_sheet |
data_ranges |
data_ranges |
Slice metabolites
Description
This function extracts metabolites with their corresponding metabolite class from .full_sheet into metabolites.
Usage
slice_metabolites(full_sheet, data_ranges)
Arguments
full_sheet |
full_sheet |
data_ranges |
data_ranges |
Summarize concentration values
Description
This function prints quantiles and NAs of raw data.
Usage
summarizeConcValues(metalyzer_se)
Arguments
metalyzer_se |
SummarizedExperiment |
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
summarizeConcValues(metalyzer_se)
Summarize quantification status
Description
This function lists the number of each quantification status and its percentage.
Usage
summarizeQuantData(metalyzer_se)
Arguments
metalyzer_se |
SummarizedExperiment |
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
summarizeQuantData(metalyzer_se)
Transformation
Description
This function performs transformation of imputed concentration values (imputed_Conc).
Usage
transform(vec, func)
Arguments
vec |
MetAlyzer metalyzer |
func |
A function for transformation |
Unify hex codes
Description
This function gets hex codes of different length and returns them in a unified format.
Usage
unify_hex(hex)
Arguments
hex |
A 3, 4, 6 or 8 digit hex code |
Update meta data
Description
This function adds another column to filtered meta_data.
Usage
updateMetaData(metalyzer_se, ..., inplace = FALSE)
Arguments
metalyzer_se |
SummarizedExperiment |
... |
Use ´new_col_name = new_column´ to rename selected variables |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
Value
An updated SummarizedExperiment
Examples
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- updateMetaData(
metalyzer_se,
Date = Sys.Date(), Analyzed = TRUE
)
# or
updateMetaData(
metalyzer_se,
Date = Sys.Date(), Analyzed = TRUE, inplace = TRUE
)
Imputation of zero values
Description
This function performs zero imputation with the minimal positive value times impute_perc_of_min.
Usage
zero_imputation(vec, impute_perc_of_min, impute_NA)
Arguments
vec |
A numeric vector containing the concentration values |
impute_perc_of_min |
A numeric value below 1 |
impute_NA |
Logical value whether to impute NA values |