Type: | Package |
Title: | Basic Quality Data Assurance for Epidemiological Research |
Version: | 2.0.0 |
Date: | 2017-06-21 |
Author: | Martin Bialke <mosaic-projekt@uni-greifswald.de>, Thea Schwaneberg <thea.schwaneberg@uni-greifswald.de>, Rene Walk <rene.walk@uni-greifswald.de> |
Maintainer: | Martin Bialke <mosaic-projekt@uni-greifswald.de> |
Description: | With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The 'MOQA' package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See https://mosaic-greifswald.de/ for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html. |
License: | AGPL-3 |
Depends: | psych, gplots, grid, readr |
NeedsCompilation: | no |
Repository: | CRAN |
Packaged: | 2017-06-22 07:51:50 UTC; bialkem |
Date/Publication: | 2017-06-22 13:23:11 UTC |
Basic Quality Data Assurance for Epidemiological Research
Description
With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The 'MOQA' package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.
Details
The DESCRIPTION file:
Package: | MOQA |
Type: | Package |
Title: | Basic Quality Data Assurance for Epidemiological Research |
Version: | 2.0.0 |
Date: | 2017-06-21 |
Author: | Martin Bialke <mosaic-projekt@uni-greifswald.de>, Thea Schwaneberg <thea.schwaneberg@uni-greifswald.de>, Rene Walk <rene.walk@uni-greifswald.de> |
Maintainer: | Martin Bialke <mosaic-projekt@uni-greifswald.de> |
Description: | With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The 'MOQA' package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>. |
License: | AGPL-3 |
Depends: | psych, gplots, grid, readr |
NeedsCompilation: | no |
Repository: | CRAN |
Index of help topics:
MOQA.env MOQA.env codelist codelist footnoteString footnoteString labelCounts labelCounts labelPercentage labelPercentage label_boxplot label_boxplot label_description label_description label_normalverteilung label_normalverteilung label_qnormplot label_qnormplot label_unit label_unit moqa Basic Quality Data Assurance for Epidemiological Research mosaic.addFootnote addFootnote mosaic.beginPlot beginPlot mosaic.countValue countValue mosaic.createSimplePdfCategorical createSimplePdfCategorical mosaic.createSimplePdfCategoricalDataframe createSimplePdfCategoricalDataframe mosaic.createSimplePdfMetric createSimplePdfMetric mosaic.createSimplePdfMetricDataframe createSimplePdfMetricDataframe mosaic.finishPlot finishPlot mosaic.generateCategoricalPlot generateCategoricalPlot mosaic.generateMetricPlots generateMetricPlots mosaic.generateMetricTablePlot generateMetricTablePlot mosaic.getTimestamp getTimestamp mosaic.importToolboxSpssDataFile importToolboxSpssDataFile mosaic.info info mosaic.loadCsvData loadCsvData mosaic.preProcessCategoricalData preProcessCategoricalData mosaic.preProcessMetricData preProcessMetricData mosaic.setGlobalCodelist setGlobalCodelist mosaic.setGlobalDescription setGlobalDescription mosaic.setGlobalMissingTreshold setGlobalMissingTreshold mosaic.setGlobalUnit setGlobalUnit outputPrefix outputPrefix qualifiedMissingsTreshold qualifiedMissingsTreshold
The aim of the MOQA R-Package is to provide a basic assessment of data quality and to generate a set of informative graphs. Especially, there should be no demand for the potential researcher to master R. This R-package enables researchers to generate reports for various kinds of metric and categorical data. Additionally, general reports for multivariate input data and, if needed, detailed results for single-variable data can be produced.
CSV-files as well as dataframes can be used as input format to create a report. The results are instantly saved in an automatically generated PDF-file. For each study variable within the data input file a separate PDF-file with standard or, if applicable, customized plots and tables is produced. These standard reports enable the user to monitor and report the data integrity and completeness. However, for more specific reports the knowledge of metadata is necessary, including definition of units, variables, descriptions, code lists and categories of qualified missings.
Version 1.2 ———– ADDED Support for metric and categorical dataframes BUGFIX Aborted report generation in case of non-existent missings in datacolumn
Version 2.0 ———– RENAME Official Renaming of former package-name mosaicQA to MOQA ADDED new function importToolboxSpssDataFile
Author(s)
Martin Bialke <mosaic-projekt@uni-greifswald.de>, Thea Schwaneberg <thea.schwaneberg@uni-greifswald.de>, Rene Walk <rene.walk@uni-greifswald.de>
Maintainer: Martin Bialke <mosaic-projekt@uni-greifswald.de>
See Also
mosaic-greifswald.de
Examples
## Example 1: Generate pdf with graphs for a single metric data column, e.g. data of body height
# load MOQA package
library('MOQA')
# specify the csv import file with metric data, use one column per variable
metric_datafile='c:/mosaic/metric_single_var.csv'
#specify output folder
outputFolder='c:/mosaic/outputs/'
#set missing threshold, optional, default is 99900
mosaic.setGlobalMissingTreshold(99900)
#set variable unit, optional
mosaic.setGlobalUnit('(cm)')
#set variable description, optional, if not uses the name of the variable is displayed in
#table heading
mosaic.setGlobalDescription('Height')
#create PDF-report,
#uncomment to start report-generation
#mosaic.createSimplePdfmetric(metric_datafile, outputFolder)
## Example 2: Generate pdf with graphs for a single categorical data column
# load MOQA package
library('MOQA')
# specify the import file with Categorical data
# first row has to contain variable names without special characters
Categorical_datafile='c:/mosaic/cat_single_var_en.csv'
#specify output folder
outputFolder='c:/mosaic/outputs/'
#set treshold to detect missings, default is 99900 (adjust this line to change this global value,
#but be careful)
mosaic.setGlobalMissingTreshold(99900)
#set description of var
mosaic.setGlobalCodelist(c('1=yes','2=no','99996=not specified','99997=not acquired'))
# create simple pdf file foreach variable column in Categorical data file,
# uncomment to start report-generation
# mosaic.createSimplePdfCategorical(Categorical_datafile,outputFolder)
## Example 3: Generate pdf with graphs for a multiple metric data columns, generates one pdf for
# each column using the variable name for table headings
# load MOQA package
library('MOQA')
# specify the import file with metric data
# use one column per variable, first row should contain variable name, following rows should
# contain data, csv Files with multiple rows are supported, decimal values should be formated
# for example : 25.4
metric_datafile='c:/mosaic/metric_multi_var.csv'
#specify output folder
outputFolder="c:/mosaic/outputs/"
# set treshold to detect missings, default is 99900 (adjust this line to change this global value
# but be careful)
mosaic.setGlobalMissingTreshold(99900)
# create PDF-Files for vars,
# uncomment to start report-generation
#mosaic.createSimplePdfmetric(metric_datafile, outputFolder)
## Example 4: Generate pdf with graphs for a multiple metric dataframe, generates one pdf for
# each column using the variable name for table headings
# load MOQA package
library('MOQA')
# specify the metric dataframe with 1-n columns, here sample data is generated
metric_data=data.frame(matrix(rnorm(20), nrow=10))
#specify output folder
outputFolder="c:/mosaic/outputs/"
# set treshold to detect missings, default is 99900 (adjust this line to change this global value
# but be careful)
mosaic.setGlobalMissingTreshold(99900)
# create PDF-Files for vars,
# uncomment to start report-generation
#mosaic.createSimplePdfMetricDataframe(metric_data, outputFolder)
## Example 5: Import data from SPSS Export file generated by Toolbox for Research
# and generate report for specific variable
# load MOQA package
library('MOQA')
# specify import dat-file
importfile="c:/mosaic/import/all_in_one.dat"
# specify output folder
outputFolder="c:/mosaic/outputs/"
# import data
#importdata=mosaic.importToolboxSpssDataFile(importfile)
# generate report for a specifc variable e.e. patient.age
# pass data as dataframe to use already given column name for a more descriptive output
#mosaic.createSimplePdfMetricDataframe(as.data.frame(importdata$ve_temperature_ear),outputFolder)
MOQA.env
Description
local environment to handle MOQA-internal variables
Note
local environment
Author(s)
The MOSAIC Project, Martin Bialke
codelist
Description
internal data variable
Note
internal data variable
Author(s)
The MOSAIC Project, Martin Bialke
footnoteString
Description
internal data variable
Note
internal data variable
Author(s)
The MOSAIC Project, Martin Bialke
labelCounts
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
labelPercentage
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
label_boxplot
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
label_description
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
label_normalverteilung
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
label_qnormplot
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
label_unit
Description
internal label for data variable
Note
internal label for data variable
Author(s)
The MOSAIC Project, Martin Bialke
addFootnote
Description
Add a Footnote to plot using footnotestring and current timestamp.
Usage
mosaic.addFootnote()
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
beginPlot
Description
begin plotting the configured graphs for loaded data and generate the output PDF-File.
Usage
mosaic.beginPlot(varname,outputfolder)
Arguments
varname |
name of the studyitem or csv column loaded to plot graphs for. |
outputfolder |
name of the output folder |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
countValue
Description
Count occurrence of search value in data column
Usage
mosaic.countValue(searchvalue, data_column)
Arguments
searchvalue |
value to search for |
data_column |
name of study item or data column to search in |
Details
useful to find qualified missings in data column
Value
count of occurences of specified value in specified data column
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
createSimplePdfCategorical
Description
Create simple PDF-file for categorical data
Usage
mosaic.createSimplePdfCategorical(inputfile, outputfolder)
Arguments
inputfile |
path to input csv-file |
outputfolder |
path to output folder |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
# load MOQA package
library('MOQA')
# specify the import file with categorial data
# first row has to contain variable names without special characters
categorial_datafile='c:/mosaic/cat_single_var_en.csv'
# specify output folder
outputFolder='c:/mosaic/outputs/'
# set treshold to detect missings, default is 99900 (adjust this line to change this global value,
# but be careful)
mosaic.setGlobalMissingTreshold(99900)
# set description of var
mosaic.setGlobalCodelist(c('1=yes','2=no','99996=not specified','99997=not acquired'))
# create simple pdf file foreach variable column in categorial data file, uncomment to start
# report-generation
# mosaic.createSimplePdfCategorical(categorial_datafile,outputFolder)
createSimplePdfCategoricalDataframe
Description
Create simple PDF-file for categorical data
Usage
mosaic.createSimplePdfCategoricalDataframe(df, outputfolder)
Arguments
df |
dataframe |
outputfolder |
path to output folder |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
createSimplePdfMetric
Description
Create simple PDF-file for metric data
Usage
mosaic.createSimplePdfMetric(inputfile, outputfolder)
Arguments
inputfile |
path to input csv file |
outputfolder |
path to output folder |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
# load MOQA package
library('MOQA')
# specify the csv import file with metric data, use one column per variable
metric_datafile='c:/mosaic/metric_single_var.csv'
#specify output folder
outputFolder='c:/mosaic/output/'
#set missing threshold, optional, default is 99900
mosaic.setGlobalMissingTreshold(99900)
#set variable unit, optional
mosaic.setGlobalUnit('(cm)')
#set variable description, optional
mosaic.setGlobalDescription('Height')
#create PDF-report, uncomment to start report-generation
#mosaic.createSimplePdfMetric(metric_datafile, outputFolder)
createSimplePdfMetricDataframe
Description
Create simple PDF-file for metric data
Usage
mosaic.createSimplePdfMetricDataframe(df, outputfolder)
Arguments
df |
path to input csv file |
outputfolder |
path to output folder |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
# load MOQA package
library('MOQA')
# specify the metric dataframe with 1-n columns, here sample data is generated
metric_data=data.frame(matrix(rnorm(20), nrow=10))
#specify output folder
outputFolder="c:/mosaic/outputs/"
# set treshold to detect missings, default is 99900 (adjust this line to change this global value
# but be careful)
mosaic.setGlobalMissingTreshold(99900)
# create PDF-Files for vars,
# uncomment to start report-generation
#mosaic.createSimplePdfMetricDataframe(metric_data, outputFolder)
finishPlot
Description
Finish plotting, close PDF-file
Usage
mosaic.finishPlot()
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
generateCategoricalPlot
Description
Generate Statistics and Create plots for categorical data
Usage
mosaic.generateCategoricalPlot(dataframe, varname)
Arguments
dataframe |
data table with one or more columns (first row should contain column names/study item names/variable names) |
varname |
selected column/study item/variable to plot graph for |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
generateMetricPlots
Description
calculate statistics and generate graphs for metric data
Usage
mosaic.generateMetricPlots(data_snippet, var_name)
Arguments
data_snippet |
data table with one or more columns (first row should contain column names/study item names/variable names) |
var_name |
selected column/study item/variable to plot graph for |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
generateMetricTablePlot
Description
Generate missing-ratio table for metric data (data, num of columns, column index, varname)
Usage
mosaic.generateMetricTablePlot(data, num_of_columns, index, varname)
Arguments
data |
preprocessed data frame including 'valid value markers' |
num_of_columns |
absolute number of to be processed data columns |
index |
current column to be processed |
varname |
current name of variable to be used in table heading |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
getTimestamp
Description
get a current timestamp formatted as %Y_%m_%d_%H%M%S
Usage
mosaic.getTimestamp()
Value
timestamp, e.g. '2016_09_09_143458'
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
importToolboxSpssDataFile
Description
load dat-file from 'toolbox for resarch' spss export with tab-separator with n columns to dataframe
Usage
mosaic.importToolboxSpssDataFile(filename)
Arguments
filename |
filename or a complete path to a dat-file |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
info
Description
MOSAIC Information
Usage
mosaic.info()
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
loadCsvData
Description
Load data from csv-file is one or more columns. first row should contain the name of the study item, e.g. 'height'
Usage
mosaic.loadCsvData(filename)
Arguments
filename |
filename or a complete path to a file |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
preProcessCategoricalData
Description
Identify unique values in data column, get absolute, percentage and cumulative statistics
Usage
mosaic.preProcessCategoricalData(data)
Arguments
data |
data frame to be processed containing categorical data |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
preProcessMetricData
Description
Pre-process metric data to allow missing-ratio table
Usage
mosaic.preProcessMetricData(data)
Arguments
data |
data frame to be preprocessed containing metric data |
Note
Function call type: internal
Author(s)
The MOSAIC Project, Martin Bialke
setGlobalCodelist
Description
set and parse a global code list for categorical data to be used in categorical plot descriptions
Usage
mosaic.setGlobalCodelist(coding)
Arguments
coding |
list of code and value pairs, see example for details |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
mosaic.setGlobalCodelist(c('1=yes','2=no', '99996=no information'))
setGlobalDescription
Description
Set Global Description for variable User (description) data. especially useful when plotting graphs for a selected data column
Usage
mosaic.setGlobalDescription(value)
Arguments
value |
string value to be used as study item description, e.g. 'waist circumference' |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
mosaic.setGlobalDescription('waist circumference')
setGlobalMissingTreshold
Description
Set Global Threshold for Missings , e.g. 99000
Usage
mosaic.setGlobalMissingTreshold(value)
Arguments
value |
threshold to separate missings from valid values |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
mosaic.setGlobalMissingTreshold(99000)
setGlobalUnit
Description
Set Global Unit Label to be used User in graphs, e.g. '(cm)'
Usage
mosaic.setGlobalUnit(value)
Arguments
value |
unit string to be used in graphs |
Note
Function call type: user
Author(s)
The MOSAIC Project, Martin Bialke
Examples
mosaic.setGlobalUnit('(cm)')
outputPrefix
Description
internal data variable
Note
internal data variable
Author(s)
The MOSAIC Project, Martin Bialke
qualifiedMissingsTreshold
Description
internal data variable
Note
internal data variable
Author(s)
The MOSAIC Project, Martin Bialke