Package ‘HCPclust’

January 30, 2026

Title Hierarchical Conformal Prediction for Clustered Data with
Missing Responses

Version 0.1.1

Description Implements hierarchical conformal prediction for clustered data with missing re-
sponses. The method uses repeated cluster-level
splitting and within-cluster subsampling to accommodate dependence, and
inverse-probability weighting to correct distribution shift induced by missingness.
Conditional densities are estimated by inverting fitted conditional quantiles
(linear quantile regression or quantile regression forests), and p-values are
aggregated across resampling and splitting steps using the Cauchy combination test.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

URL https://github.com/judywangstat/HCP

BugReports https://github.com/judywangstat/HCP/issues
Imports stats, grf, quantreg, xgboost, quantregForest

Suggests foreach, doParallel, doRNG, parallel, testthat (>= 3.0.0),
knitr, rmarkdown, FNN, rstudioapi

Config/testthat/edition 3
NeedsCompilation no

Author Menghan Yi [aut, cre],
Judy Wang [aut]

Maintainer Menghan Yi <menghany@umich.edu>
Repository CRAN
Date/Publication 2026-01-30 11:10:02 UTC

Contents

fit_cond_density_quantile . . . . . . ...
fit_missingness_propensity . . . . . . . . . ... e


https://github.com/judywangstat/HCP
https://github.com/judywangstat/HCP/issues

Index

fit_cond_density_quantile

generate_clustered_mar . . . . . . .. L. 7
hep_conformal_region . . . . . . ... 9
hep_predict_targets . . . . . . ... 12
plot_hcp_intervals . . . . . . . . ... e e e 15

19

fit_cond_density_quantile

Estimate conditional density pi(ylx) via quantile process + quotient
estimator

Description

Fits a conditional quantile function @y (7 | ) using pooled observed data (working-independence),
and estimates the conditional density through the quotient estimator along the quantile curve:

#HO(r | 2) |z} = = 2h(T)A ’
{Q( | )‘ } Q(T+h(7)‘1’)*@(77h(7—)|z)

For numerical stability, the quantile curve can be monotone-adjusted (isotonic regression), and tail
decay extrapolation can be used before interpolation to 7(y | ).

Usage
fit_cond_density_quantile(
dat,
y_col = "Y",
delta_col = "delta”,
x_cols,

taus = seq(0.05, 0.95, by = 0.01),

h

= NULL,

method = c("rq", "qrf"),
enforce_monotone = TRUE,
tail_decay = TRUE,
num_extra_points = 10L,
decay_factor = 0.8,
dens_floor = 1e-10,

eps = 1e-08,
gap_min = 0.01,
seed = NULL,
)
Arguments
dat data.frame in long format, containing outcome, missingness indicator, and co-

variates.



fit_cond_density_quantile 3

y_col name of outcome column (observed Y, may contain NA).

delta_col name of missingness indicator (1 observed, 0 missing).

x_cols character vector of covariate column names (include time if desired).

taus grid of quantile levels in (0,1) at which the quantile process is evaluated.

h Bandwidth(s) for quotient. Either a scalar or a numeric vector of length length(taus).

If NULL, a tau-specific bandwidth vector i(7) is computed via quantreg: :bandwidth.rq,
and automatically shrunk near the boundaries to ensure 7 + h(7) € (0, 1).

method quantile engine: "rq" (linear quantile regression) or "qrf" (quantile random
forest).

enforce_monotone
logical; if TRUE, apply isotonic regression to the predicted quantile curve in 7
for each x to reduce quantile crossing.

tail_decay logical; if TRUE, add extra tail points with geometric decay before interpolation.

num_extra_points
number of extra tail points on each side when tail_decay=TRUE.

decay_factor decay factor in (0,1) for tail densities when tail_decay=TRUE.

dens_floor lower bound for density to avoid numerical issues.

eps small stabilizer for denominator pmax (Qplus-Qminus, eps).
gap_min minimum spacing for tail extrapolation points.

seed optional seed.

extra arguments passed to the underlying quantile engine:

rq passed to quantreg::rq.fit, e.g. rq_method="br".

grf passed to quantregForest: :quantregForest, e.g. ntree=500.

Value

A list containing fitted objects and prediction functions:
predict_Q(x_new, taus_use) Returns the estimated conditional quantiles
Qv (7| )

for 7 € (0, 1) specified by taus_use, evaluated at new covariate values x_new. The output is
a numeric matrix with one row per covariate vector  and one column per quantile level 7.

predict_density(x_new, y_new) Returns the estimated conditional density

Ty | x),

evaluated at specified (x,y) pairs. The inputs x_new and y_new are paired row-wise, so that the
r-th row of x_new is evaluated at y_new[r].



4 fit_cond_density_quantile

Examples

B =

HHE m o
## This illustrates the most basic usage: estimating pi(y | x)
## at one covariate value x and one response value y.

dat <- generate_clustered_mar(
n=200, m=4,d=2,
target_missing = 0.3, seed = 1

)

fit <- fit_cond_density_quantile(
dat,
y_col = "Y" delta_col = "delta”,
x_cols = c("X1", "X2"),
taus = seq(@.05, 0.95, by = 0.02),
method = "rq",
seed = 1

)

## a single covariate value x

x1 <- matrix(c(0.2, -1.0), nrow = 1)

colnames(x1) <- c("X1", "X2")

## estimate pi(y | x) at y = 0.5

fit$predict_density(x1, y_new = 0.5)

e
## Case B: Conditional density as a function of y (density curve)
H m o
## Here we fix x and evaluate pi(y | x) over a grid of y values,
## which produces an estimated conditional density curve.

y_grid <- seq(-3, 3, length.out = 201)

## reuse the same x by repeating it to match the y-grid
x_rep <- x1[rep(1, length(y_grid)), , drop = FALSE]
f_grid <- fit$predict_density(x_rep, y_grid)

#H -
## True conditional density under the data generator

#H# ——m e
## Data are generated as:

## Y = X*T beta + b + eps,

## b ~ N(Q, sigma_b*2), eps ~ N(Q, sigma_eps*2)

## Hence the marginal conditional density is:

## Y | X = x ~ N(x*T beta, sigma_b*2 + sigma_eps*2)

beta_true <- c(0.5, 0.6)

sigma_b_true <- 0.7

sigma_eps_true <- 1.0

mu_true <- drop(x1 %*% beta_true)

sd_true <- sqgrt(sigma_b_true*2 + sigma_eps_true*2)

f_true <- stats::dnorm(y_grid, mean = mu_true, sd = sd_true)



fit_missingness_propensity 5

B oo o
## Visualization: estimated vs true conditional density

## (use smooth.spline on log-density for a smoother display)
e

## smooth the estimated curve for visualization

ok <- is.finite(f_grid) & (f_grid > 0)

sp <- stats::smooth.spline(y_grid[ok], log(f_grid[ok]), spar = 0.85)
f_smooth <- exp(stats::predict(sp, y_grid)sy)

ymax <- max(c(f_smooth, f_true), na.rm = TRUE)
plot(
y_grid, f_smooth,
type = "1", 1lwd = 2,
xlab = "y",
ylab = expressionChat(pi)(y ~ "|" ~ x)),
ylim = c(@, 1.2 * ymax),
main = "Conditional density at a fixed x: estimated vs true”
)
grid(col = "gray85"”, lty = 1)
lines(y_grid, f_true, 1lwd = 2, 1ty = 2)
legend(
"topright”,
legend = c("Estimated (smoothed)”, "True (generator)"),
1ty = c(1, 2), 1wd = c(2, 2), bty = "n"
)

fit_missingness_propensity
Fit missingness propensity model P(delta=1 | X) from pooled data

Description

Fits the missingness propensity m(z) = P(§ = 1 | «) under a marginal missingness model us-
ing pooled observations. Estimation can be carried out using logistic regression, Generalized
Random Forests (GRF), or gradient boosting (xgboost). Both continuous and discrete covari-
ates are supported; categorical variables are automatically expanded into dummy variables via
model.matrix().

Usage
fit_missingness_propensity(
dat,
delta_col = "delta”,
x_cols,

method = c("logistic”, "grf", "boosting"),



6 fit_missingness_propensity

eps = le-06,
)
Arguments
dat A data.frame containing delta_col and x_cols. Can be any user-supplied
dataset; generate_clustered_mar() is used only in examples.
delta_col Name of missingness indicator column (1 observed, 0 missing).
x_cols Character vector of covariate column names used to predict missingness.
method One of "logistic”, "grf", "boosting".
eps Clipping level applied to the estimated missingness propensity 7 (x), truncating
predictions to [e, 1 — €.
Extra arguments passed to the learner:
logistic passed to stats::glm.
grf passedto grf::probability_forest.
boosting passed to xgboost: :xgb.train via params= and nrounds=.
Value

A list containing:

method The estimation method used.
fit The fitted missingness propensity model.

predict A function predict(x_new) that returns the estimated missingness propensity 7(z) =
P(6 =1 | z) evaluated at new covariate values x_new, with predictions clipped to [e, 1 — €].

Examples

dat <- generate_clustered_mar(
n=280, m=4, d=2,
alpha® = -0.4, alpha = c(-1.0, 0.8),
target_missing = 0.30,
seed = 1
)
x_cols <- c("X1", "X2")

## Logistic regression

fit_log <- fit_missingness_propensity(dat, "delta”, x_cols, method = "logistic")
p_log <- fit_log$predict(dat[, x_cols, drop = FALSE])

head(p_log)

## Compare with other methods

## True propensity under the generator

s <- attr(dat, "alpha_shift")

eta <- (-0.4) + (-1.0) * dat$X1 + 0.8 * dat$X2
pi_true <- 1 / (1 + exp(-pmin(pmax(eta, -30), 30)))



generate_clustered_mar 7

fit_grf <- fit_missingness_propensity(

)

dat, "delta", x_cols,
method = "grf"”, num.trees = 800, num.threads = 1

fit_xgh <- fit_missingness_propensity(

dat, "delta", x_cols,

method = "boosting”,

nrounds = 300,

params = list(max_depth = 3, eta = 0.05, subsample = 0.8, colsample_bytree = 0.8),
nthread = 1

)
p_grf <- fit_grf$predict(dat[, x_cols, drop = FALSE])
p_xgb <- fit_xgb$predict(dat[, x_cols, drop = FALSE])

op <- par(mfrow = c(1, 3))
plot(pi_true, p_log, pch = 16, cex = 0.5,

xlab = "True pi(x)"”, ylab = "Estimated pi-hat(x)"”, main = "Logistic"”); abline(@, 1, lwd = 2)

plot(pi_true, p_grf, pch = 16, cex = 0.5,

xlab = "True pi(x)", ylab = "Estimated pi-hat(x)", main = "GRF"); abline(@, 1, lwd = 2)

plot(pi_true, p_xgb, pch = 16, cex = 0.5,

xlab = "True pi(x)", ylab = "Estimated pi-hat(x)", main = "Boosting"”); abline(@, 1, lwd = 2)

par(op)

generate_clustered_mar

Simulate clustered continuous outcomes with covariate-dependent
MAR missingness

Description

Simulates clustered data {(X;

j» Yi ;0 ;) } under a hierarchical subject-level model with covariate-

dependent Missing at Random (MAR) missingness: § L Y | X. Covariates X ; are fully observed,
while outcomes Y; ; may be missing.

Data are generated according to the following mechanisms:

* Between-subject level: subject random intercepts b; ~ N(0,07) induce within-cluster de-
pendence, corresponding to latent subject-specific laws P;.

* Qutcomes: for each measurement j = 1,...,m;,
Yij =X B+bi+ei,
3 1,7 7 El:]’

where, for each subject i, the within-cluster errors {e; ; };”:11 are mutually independent with
gij ~ N(0,02) when rho =0. When rho != 0, they follow a stationary first-order autore-
gressive process (AR(1)) within the cluster:

€ij = PEij—1+ Nig, MNij~ N(07a§(1 — P2)) )

which implies Var(e; ;) = o2 and Cov(e; j,&; j+x) = o2pl¥l for all k.



8 generate_clustered_mar

* MAR missingness: outcomes are observed with probability
Pr(d;,; = 1| X ;) = logit™" (ag + o X, ),

which depends only on covariates, ensuring § L Y | X. If target_missing is provided, the
intercept o is automatically calibrated (via a deterministic root-finding procedure on the ex-
pected missing proportion) so that the marginal missing proportion is close to target_missing.

Usage

generate_clustered_mar(
n,
m = 4L,
d=2L,
beta = NULL,
sigma_b = 0.7,
sigma_eps = 1,

rho = 0,
hetero_gamma = 0,
x_dist = c¢("normal”, "bernoulli”, "uniform"),
Xx_params = NULL,
alphao = -0.2,
alpha = NULL,
target_missing = NULL,
seed = NULL
)
Arguments
n Number of clusters (subjects).
m Cluster size. Either a single positive integer (common m; = m) or an integer
vector of length n specifying m; for each subject.
d Covariate dimension.
beta Population regression coefficients for Y | X (length d). If NULL, defaults to
seq(0.5, 0.5+0.1x(d-1), by=0.1).
sigma_b SD of subject random intercept b;.
sigma_eps Marginal SD of within-subject errors ¢; ;.
rho AR(1) correlation parameter within cluster for €; ;.

hetero_gamma Optional heteroskedasticity parameter; a value of 0 yields the standard homoskedas-
tic model, while nonzero values induce covariate-dependent error variance through
the first covariate X7 .

x_dist Distribution for covariates: "normal”, "bernoulli”, or "uniform”.
X_params Optional list of distribution parameters for x_dist.
alphao Missingness intercept oy. If target_missing is not NULL, the effective inter-

cept becomes o + s, where s is a calibrated shift.

alpha Missingness slopes (length d). If NULL, defaults to zeros.



hep_conformal_region 9

target_missing Target marginal missing proportion defined as the empirical average of the fitted
missing probabilities 1 — 7(X; ;) over all observations, where w(z) = Pr(é =
1| X = z). If NULL, no calibration.

seed Optional RNG seed.

Value

A data. frame in long format with one row per measurement:

id Cluster index.

J Within-cluster index.

Y Observed outcome; NA if missing.

Y_full Latent complete outcome.

delta Observation indicator (1 observed, 0 missing).

X1..Xd Covariates.
Attributes:

m_i Integer vector of cluster sizes (myq,...,my,).

target_missing Target marginal missing proportion used for calibration, defined as the empirical
average of missing probabilities over all observations.

alpha_shift Calibrated global intercept shift s added to the missingness linear predictor ag + s+
aTXm (present only when target_missing is provided).

missing_rate Sample missing rate N~!' " I(§; ; = 0). This may deviate from target_missing
due to Bernoulli sampling variability.

Examples

dat <- generate_clustered_mar(
n =200, m=5,d=2,
alpha® = -0.2, alpha = c(-1.0, 0.0),
target_missing = 0.30,
seed = 1
)
mean(dat$delta == 0) # ~0.30
attr(dat, "alpha_shift"”) # calibrated shift

hcp_conformal_region  HCP conformal prediction region with repeated subsampling and re-
peated data splitting




10 hep_conformal_region

Description

Constructs a marginal conformal prediction region for a new covariate value x,,; under clustered
data with missing outcomes, following the HCP framework:

* (1) Model fitting. Fit a pooled conditional density model 7(y | x) using fit_cond_density_quantile,
together with a marginal missingness propensity model p(x) = P(§ = 1 | x) using fit_missingness_propensity,
both estimated on a subject-level training split.

* (2) Subsampled calibration. Repeatedly construct calibration sets by randomly drawing one
observation per subject from the calibration split.

* (3) Weighted conformal scoring. Compute weighted conformal p-values over a candidate
grid using the nonconformity score R(x,y) = —7(y | «) and inverse-propensity weights
w(z) = 1/p(x) under a MAR assumption.

* (4) Aggregation. Aggregate dependent p-values across subsamples (B) and data splits (S)
using either the Cauchy combination test (CCT/ACAT) or the arithmetic mean.

The prediction region is returned as a subset of the supplied grid:

a(l‘n+1;a) = {y € y . pﬁnal(y) > 05}'

Usage

hcp_conformal_region(
dat,
id_col,
y_col = "Y",
delta_col = "delta",
x_cols,
x_test,
y_grid,
alpha = 0.1,
train_frac = 0.5,
S =5,
B =5,
combine_B = c("cct”, "mean"),
combine_S = c("cct”, "mean"),
seed = NULL,

return_details = FALSE,

dens_method = c("rq"”, "qrf"),

dens_taus = seq(0.05, 0.95, by = 0.02),

dens_h = NULL,

enforce_monotone = TRUE,

tail_decay = TRUE,

prop_method = c("logistic”, "grf", "boosting"),
prop_eps = 1e-06,



hep_conformal_region 11

Arguments

dat A data.frame containing clustered observations. Must include id_col, y_col,
delta_col, and all columns in x_cols.

id_col Subject/cluster identifier column name.

y_col Outcome column name.

delta_col Missingness indicator column name (1 observed, 0 missing).

x_cols Covariate column names used for both density estimation and missingness propen-
sity.

x_test New covariate value(s). A numeric vector (treated as one row), or a numeric ma-
trix/data.frame with nrow(x_test)=K test points and ncol (x_test)=length(x_cols)
covariates.

y_grid Numeric vector of candidate y values at which to evaluate conformal p-values.

alpha Miscoverage level in (0,1). Region keeps y with p(y) > «.

train_frac Fraction of subjects assigned to training in each split.

S Number of independent subject-level splits.

B Number of subsamples per split (one observation per subject per subsample).

combine_B Combine p-values across B subsamples: "cct"” (default) or "mean”.

combine_S Combine p-values across S splits: "cct” (default) or "mean”.

seed Optional seed for reproducibility.

return_details Logical; if TRUE, also return split-level p-values and split metadata.

dens_method Density/quantile engine for fit_cond_density_quantile: "rq” or "qrf".
dens_taus Quantile grid passed to fit_cond_density_quantile.
dens_h Bandwidth(s) passed to fit_cond_density_quantile.

enforce_monotone
Passed to fit_cond_density_quantile.

tail_decay Passed to fit_cond_density_quantile.

prop_method Missingness propensity method for fit_missingness_propensity: "logistic”,
"grf”, or "boosting".

prop_eps Clipping level for propensity predictions used by fit_missingness_propensity.
Extra arguments passed to fit_missingness_propensity.

Value
If return_details=FALSE (default), a list with:

region Length-K list; region[[k]] is the subset of y_grid with p_final[k, ] > alpha.

lo_hi K x 2 matrix with columns c("1o0"”,"hi") giving min/max of region[[k]] (NA if empty).
p_final K x length(y_grid) matrix of final p-values on y_grid.

y_grid The candidate grid used.

If return_details=TRUE, also includes:

p_split An array with dimensions c(S, K, length(y_grid)) of split-level p-values.
split_meta Train subject IDs for each split.



12 hep_predict_targets

Examples

dat <- generate_clustered_mar(n = 200, m = 4, d = 2, target_missing = 0.30, seed = 1)
y_grid <- seq(-4, 4, length.out = 200)
x_test <- matrix(c(@0.2, -1.0), nrow = 1); colnames(x_test) <- c("X1", "X2")

res <- hcp_conformal_region(
dat, id_col = "id",
y_col = "Y" delta_col = "delta”,
x_cols = c("X1", "X2"),
x_test = x_test,
y_grid = y_grid,

alpha = 0.1,
S=2,B=2,
seed = 1

)

## interval endpoints on the y-grid (outer envelope)
c(lo = min(res$region[[1]]), hi = max(res$region[[1]1]))

hcp_predict_targets HCP prediction wrapper for multiple measurements with optional per-
patient Bonferroni

Description

Wraps hcp_conformal_region to produce conformal prediction regions for a collection of mea-
surements, possibly including multiple measurements per individual.

Based on the structure of the test dataset, the prediction mode is determined automatically as fol-
lows, where P denotes the number of patients (clusters) and M denotes the number of measure-
ments per patient:

e P =1, M = 1: Predict a single patient with a single measurement.

* P =1, M > 1: Predict a single patient with multiple measurements (e.g., repeated or longi-
tudinal measurements for the same patient). If per-patient simultaneous prediction is desired,
optional per-patient Bonferroni calibration can be applied.

e P > 1, M = 1: Predict multiple patients, each with a single measurement. Predictions are
performed independently at the nominal level «, without Bonferroni calibration.

* P > 1, M > 1: Predict multiple patients, each with multiple measurements. When per-
patient simultaneous coverage is desired, a Bonferroni correction can be applied by using an
effective level /M, for each measurement, yielding Bonferroni-adjusted marginal prediction
regions for patient p.



hep_predict_targets 13

Usage

hcp_predict_targets(
dat,
test,
pid_col = "pid",
x_cols,
y_grid,
alpha = 0.1,
bonferroni = FALSE,
return_region = FALSE,
id_col = "id",
y_col = "Y",
delta_col = "delta",

Arguments

dat Training/calibration data passed to hcp_conformal_region.

test A data.frame of test measurements, where each row corresponds to a single
measurement. The test data must follow one of the four clustered settings P =
IM=1,P=1,M>1,P>1,M=1,or P > 1, M > 1, where P is the
number of patients (clusters) and M is the number of measurements per patient.
The data.frame must include a patient identifier specified by pid_col and all
covariate columns listed in x_cols. Repeated values of pid_col indicate mul-
tiple measurements (e.g., repeated or longitudinal measurements) for the same
patient.

pid_col Column in test giving the patient (cluster/subject) identifier. Default "pid".

x_cols Covariate column names (e.g., c("X1")).

y_grid Candidate y-grid passed to hcp_conformal_region.

alpha Nominal miscoverage level in (0,1) passed to hcp_conformal_region.

bonferroni Logical; if TRUE, apply per-patient Bonferroni only when a patient has multiple

test measurements (i.e., M, > 1). If FALSE, always use level a.

return_region Logical; if TRUE, return the full region (subset of y_grid) for each row.
id_col, y_col, delta_col
Column names in dat for patient ID, outcome, and missingness indicator.

Additional arguments forwarded to hcp_conformal_region (e.g., S, B, combine_B,
combine_S, dens_method, prop_method, seed).

Value

A list with:

pred A data.frame in the same row order as test. It contains all columns of test plus the effective
level alpha_eff and the prediction-band endpoints 1o and hi for each measurement.



14 hep_predict_targets

region If return_region=TRUE, a list of length nrow(test) where each element is the subset of
y_grid retained in the prediction region for the corresponding test row; otherwise NULL.

meta A list with summary information, including the number of patients P, the per-patient mea-
surement counts M_by_pid, and the settings alpha and bonferroni.

Note

When per-patient Bonferroni calibration is enabled and a patient has a large number of measure-
ments (e.g., M, > 10), the effective level a/M,, may be very small, which can lead to extremely
wide prediction regions (potentially spanning the entire y_grid). This behavior is an inherent con-
sequence of Bonferroni adjustment and not a numerical issue.

In longitudinal or panel studies, a cluster corresponds to a single individual (subject), and within-
cluster points correspond to multiple time points or repeated measurements on the same individual.
In this setting, the time variable time can be treated as a generic covariate. In the examples below,
time is represented by X1.

Examples

B oo
## Examples illustrating the four test-data settings:

## (P=1, M=1), (P=1, M>1), (P>1, M=1), and (P>1, M>1)

B oo
set.seed(1)

## training data (fixed across all cases)
dat_train <- generate_clustered_mar(
n=200, m=4,d=1,

x_dist = "uniform”, x_params = list(min = @, max = 10),
target_missing = 0.30,
seed = 1

)
y_grid <- seq(-6, 6, length.out = 201)

## Case 1: P=1, M=1 (one patient, one measurement)
test_11 <- data.frame(
pid = 1,
X1 =2.5
)
out_11 <- hcp_predict_targets(
dat = dat_train,
test = test_11,

x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S=2,B=2,
seed = 1

)
out_11$pred

## Case 2: P=1, M>1 (one patient, multiple measurements)



plot_hcp_intervals

test_1M <- data.frame(

pid = 1,

X1 =c(, 3,7, 9

)

out_1M <- hcp_predict_targets(

dat = dat_train,
test = test_1M,

x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S=2,B=2,
seed = 1

)
out_1M$pred

## Case 3: P>1, M=1
test_P1 <- data.frame(

pid = 1:4,

X1 =c(2, 4, 6, 8)

)

(multiple patients, one measurement each)

out_P1 <- hcp_predict_targets(

dat = dat_train,
test = test_P1,

x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S=2,B=2,
seed = 1

)
out_P1$pred

## Case 4: P>1, M>1
test_PM <- data.frame(

(multiple patients, multiple measurements per patient)

pid = c(1,1, 2,2,2, 3,3),

X1 =¢c(1,6, 2,5,9,

)

3,8)

out_PM <- hcp_predict_targets(

dat = dat_train,
test = test_PM,

x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S=2,B=2,
seed = 1

)
out_PM$pred

15

plot_hcp_intervals

Plot HCP prediction intervals (band vs covariate or intervals by pa-
tient)




16

Description
Unified plotting fu

¢ mode="band’

e mode="pid":
ate).

Usage

plot_hcp_interv
df,
mode = c("ban
lo_col = "10"
hi_col = "hi"
y_true_col =
y_true = NULL
show_center =
show_true = T
x_col = NULL,
pid_col = "pi
x_sort_col =
max_patients

Arguments

df

mode

lo_col

hi_col

y_true_col

y_true

show_center

show_true

x_col

plot_hcp_intervals

nction for two common visualizations of HCP prediction intervals:

': plot an interval band (lo/hi) versus a 1D covariate (e.g., time X1).

plot one interval per patient on the x-axis (patients optionally sorted by a covari-

als(

dH’ Ilpidll)’
NULL,

TRUE,
RUE,

d”’
NULL,
= NULL,

A data.frame containing prediction results. It must include the interval endpoints
specified by lo_col and hi_col, and the covariate columns required by the
chosen plotting mode.

Plotting mode. Use "band” to visualize an interval band as a function of a
continuous covariate, or "pid"” to visualize one prediction interval per patient
on the x-axis.

Name of the column containing the lower endpoint of the prediction interval.
Defaultis "10".

Name of the column containing the upper endpoint of the prediction interval.
Defaultis "hi".

Optional name of a column in df containing the true outcome values. Used for
overlaying truth points when show_true = TRUE.

Optional numeric vector of true outcome values with length equal to nrow(df).
If provided, this overrides y_true_col.

Logical; if TRUE, draw the midpoint of each interval (as a dashed line in mode =
"band” or as points in mode = "pid").

Logical; if TRUE, overlay true outcome values when available.

(mode = "band") Name of the covariate column used as the x-axis in the interval
band plot (e.g., time or another continuous predictor).



plot_hcp_intervals 17

pid_col (mode = "pid") Name of the column identifying patients (or clusters). Each
patient must appear exactly once in df. Default is "pid".

x_sort_col (mode = "pid") Optional covariate column used to order patients along the x-axis
(e.g., "X1"). If NULL, patients are ordered by their IDs.

max_patients (mode = "pid") Optional maximum number of patients to display. If specified,
only the first max_patients patients after sorting are plotted.

Additional graphical parameters passed to plot, such as main, xlab, ylab,
xlim, or ylim.

Value
Invisibly returns the data.frame used for plotting:

* For mode = "band”, the input df sorted by x_col.
* For mode = "pid", the input df sorted by pid_col or x_sort_col, if provided.

Examples

## -
## Two common plots:
## (A) one patient, multiple measurements -> interval band vs X1
## (B) multiple patients, one measurement -> intervals by patient (sorted by X1)
#H -
dat_train <- generate_clustered_mar(
n=200, m=20,d=1,
x_dist = "uniform”, x_params = list(min = @, max = 10),
hetero_gamma = 2.5,
target_missing = 0.30,
seed = 1
)
y_grid <- seq(-6, 10, length.out = 201)

## test data with latent truth
dat_test <- generate_clustered_mar(
n=100, m=20, d=1,

x_dist = "uniform”, x_params = list(min = @, max = 10),
hetero_gamma = 2.5,
seed = 999
)
## —————————= Case A: P=1, M>1 (one patient, multiple measurements) ----------

pid <- dat_test$id[1]

idx <- which(dat_test$id == pid)

idx <- idx[order(dat_test$X1[idx])J[1:10]

test_1M <- data.frame(pid = pid, X1 = dat_test$X1[idx], y_true = dat_test$Y_fulll[idx])

out_1M <- hcp_predict_targets(
dat = dat_train, test = test_1M,
x_cols = "X1", y_grid = y_grid,
alpha = 0.1,
S=2,B=2,



18

seed = 1
)
plot_hcp_intervals(
out_1M$pred, mode = "band”, x_col = "X1",
y_true_col = "y_true”, show_true = TRUE,
main = "Case A: one patient, multiple time points (band vs time)"”

)

plot_hcp_intervals

##H -————————- Case B: P>1, M=1 (multiple patients, one measurement each) ----------

## take one measurement per patient: j==1 for the first 20 patients
pids <- unique(dat_test$id)[1:20]
test_P1 <- subset(dat_test, id %in% pids & j == 1,
select = c(id, X1, Y_full))
names(test_P1) <- c("pid"”, "X1", "y_true")

out_P1 <- hcp_predict_targets(
dat = dat_train, test = test_P1,
x_cols = "X1", y_grid = y_grid,
alpha = 0.1,
S=2,B=2,
seed = 1
)
plot_hcp_intervals(
out_P1$pred, mode = "pid”, pid_col = "pid"”, x_sort_col = "X1",
y_true_col = "y_true"”, show_true = TRUE,
main = "Case B: multiple patients, one time point (by patient)”



Index

fit_cond_density_quantile, 2, 10, 11
fit_missingness_propensity, 5, 10, 11

generate_clustered_mar, 7

hcp_conformal_region, 9, 12, 13
hcp_predict_targets, 12

plot, 17
plot_hcp_intervals, 15

19



	fit_cond_density_quantile
	fit_missingness_propensity
	generate_clustered_mar
	hcp_conformal_region
	hcp_predict_targets
	plot_hcp_intervals
	Index

