
Package ‘HCPclust’
January 30, 2026

Title Hierarchical Conformal Prediction for Clustered Data with
Missing Responses

Version 0.1.1

Description Implements hierarchical conformal prediction for clustered data with missing re-
sponses. The method uses repeated cluster-level
splitting and within-cluster subsampling to accommodate dependence, and
inverse-probability weighting to correct distribution shift induced by missingness.
Conditional densities are estimated by inverting fitted conditional quantiles
(linear quantile regression or quantile regression forests), and p-values are
aggregated across resampling and splitting steps using the Cauchy combination test.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

URL https://github.com/judywangstat/HCP

BugReports https://github.com/judywangstat/HCP/issues

Imports stats, grf, quantreg, xgboost, quantregForest

Suggests foreach, doParallel, doRNG, parallel, testthat (>= 3.0.0),
knitr, rmarkdown, FNN, rstudioapi

Config/testthat/edition 3

NeedsCompilation no

Author Menghan Yi [aut, cre],
Judy Wang [aut]

Maintainer Menghan Yi <menghany@umich.edu>

Repository CRAN

Date/Publication 2026-01-30 11:10:02 UTC

Contents
fit_cond_density_quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fit_missingness_propensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1

https://github.com/judywangstat/HCP
https://github.com/judywangstat/HCP/issues


2 fit_cond_density_quantile

generate_clustered_mar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
hcp_conformal_region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
hcp_predict_targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
plot_hcp_intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Index 19

fit_cond_density_quantile

Estimate conditional density pi(y|x) via quantile process + quotient
estimator

Description

Fits a conditional quantile function Q̂Y (τ | x) using pooled observed data (working-independence),
and estimates the conditional density through the quotient estimator along the quantile curve:

π̂{Q̂(τ | x) | x} =
2h(τ)

Q̂(τ + h(τ) | x)− Q̂(τ − h(τ) | x)
.

For numerical stability, the quantile curve can be monotone-adjusted (isotonic regression), and tail
decay extrapolation can be used before interpolation to π(y | x).

Usage

fit_cond_density_quantile(
dat,
y_col = "Y",
delta_col = "delta",
x_cols,
taus = seq(0.05, 0.95, by = 0.01),
h = NULL,
method = c("rq", "qrf"),
enforce_monotone = TRUE,
tail_decay = TRUE,
num_extra_points = 10L,
decay_factor = 0.8,
dens_floor = 1e-10,
eps = 1e-08,
gap_min = 0.01,
seed = NULL,
...

)

Arguments

dat data.frame in long format, containing outcome, missingness indicator, and co-
variates.



fit_cond_density_quantile 3

y_col name of outcome column (observed Y, may contain NA).

delta_col name of missingness indicator (1 observed, 0 missing).

x_cols character vector of covariate column names (include time if desired).

taus grid of quantile levels in (0,1) at which the quantile process is evaluated.

h Bandwidth(s) for quotient. Either a scalar or a numeric vector of length length(taus).
If NULL, a tau-specific bandwidth vector h(τ) is computed via quantreg::bandwidth.rq,
and automatically shrunk near the boundaries to ensure τ ± h(τ) ∈ (0, 1).

method quantile engine: "rq" (linear quantile regression) or "qrf" (quantile random
forest).

enforce_monotone

logical; if TRUE, apply isotonic regression to the predicted quantile curve in τ
for each x to reduce quantile crossing.

tail_decay logical; if TRUE, add extra tail points with geometric decay before interpolation.

num_extra_points

number of extra tail points on each side when tail_decay=TRUE.

decay_factor decay factor in (0,1) for tail densities when tail_decay=TRUE.

dens_floor lower bound for density to avoid numerical issues.

eps small stabilizer for denominator pmax(Qplus-Qminus, eps).

gap_min minimum spacing for tail extrapolation points.

seed optional seed.

... extra arguments passed to the underlying quantile engine:

rq passed to quantreg::rq.fit, e.g. rq_method="br".

qrf passed to quantregForest::quantregForest, e.g. ntree=500.

Value

A list containing fitted objects and prediction functions:

predict_Q(x_new, taus_use) Returns the estimated conditional quantiles

Q̂Y (τ | x)

for τ ∈ (0, 1) specified by taus_use, evaluated at new covariate values x_new. The output is
a numeric matrix with one row per covariate vector x and one column per quantile level τ .

predict_density(x_new, y_new) Returns the estimated conditional density

π̂(y | x),

evaluated at specified (x,y) pairs. The inputs x_new and y_new are paired row-wise, so that the
r-th row of x_new is evaluated at y_new[r].



4 fit_cond_density_quantile

Examples

## ------------------------------------------------------------
## Case A: Conditional density evaluated at a single point (x, y)
## ------------------------------------------------------------
## This illustrates the most basic usage: estimating pi(y | x)
## at one covariate value x and one response value y.

dat <- generate_clustered_mar(
n = 200, m = 4, d = 2,
target_missing = 0.3, seed = 1

)
fit <- fit_cond_density_quantile(

dat,
y_col = "Y", delta_col = "delta",
x_cols = c("X1", "X2"),
taus = seq(0.05, 0.95, by = 0.02),
method = "rq",
seed = 1

)
## a single covariate value x
x1 <- matrix(c(0.2, -1.0), nrow = 1)
colnames(x1) <- c("X1", "X2")
## estimate pi(y | x) at y = 0.5
fit$predict_density(x1, y_new = 0.5)

## ------------------------------------------------------------
## Case B: Conditional density as a function of y (density curve)
## ------------------------------------------------------------
## Here we fix x and evaluate pi(y | x) over a grid of y values,
## which produces an estimated conditional density curve.

y_grid <- seq(-3, 3, length.out = 201)
## reuse the same x by repeating it to match the y-grid
x_rep <- x1[rep(1, length(y_grid)), , drop = FALSE]
f_grid <- fit$predict_density(x_rep, y_grid)

## ------------------------------------------------------------
## True conditional density under the data generator
## ------------------------------------------------------------
## Data are generated as:
## Y = X^T beta + b + eps,
## b ~ N(0, sigma_b^2), eps ~ N(0, sigma_eps^2)
## Hence the marginal conditional density is:
## Y | X = x ~ N(x^T beta, sigma_b^2 + sigma_eps^2)

beta_true <- c(0.5, 0.6)
sigma_b_true <- 0.7
sigma_eps_true <- 1.0
mu_true <- drop(x1 %*% beta_true)
sd_true <- sqrt(sigma_b_true^2 + sigma_eps_true^2)
f_true <- stats::dnorm(y_grid, mean = mu_true, sd = sd_true)



fit_missingness_propensity 5

## ------------------------------------------------------------
## Visualization: estimated vs true conditional density
## (use smooth.spline on log-density for a smoother display)
## ------------------------------------------------------------

## smooth the estimated curve for visualization
ok <- is.finite(f_grid) & (f_grid > 0)
sp <- stats::smooth.spline(y_grid[ok], log(f_grid[ok]), spar = 0.85)
f_smooth <- exp(stats::predict(sp, y_grid)$y)

ymax <- max(c(f_smooth, f_true), na.rm = TRUE)
plot(

y_grid, f_smooth,
type = "l", lwd = 2,
xlab = "y",
ylab = expression(hat(pi)(y ~ "|" ~ x)),
ylim = c(0, 1.2 * ymax),
main = "Conditional density at a fixed x: estimated vs true"

)
grid(col = "gray85", lty = 1)
lines(y_grid, f_true, lwd = 2, lty = 2)
legend(

"topright",
legend = c("Estimated (smoothed)", "True (generator)"),
lty = c(1, 2), lwd = c(2, 2), bty = "n"

)

fit_missingness_propensity

Fit missingness propensity model P(delta=1 | X) from pooled data

Description

Fits the missingness propensity π(x) = P(δ = 1 | x) under a marginal missingness model us-
ing pooled observations. Estimation can be carried out using logistic regression, Generalized
Random Forests (GRF), or gradient boosting (xgboost). Both continuous and discrete covari-
ates are supported; categorical variables are automatically expanded into dummy variables via
model.matrix().

Usage

fit_missingness_propensity(
dat,
delta_col = "delta",
x_cols,
method = c("logistic", "grf", "boosting"),



6 fit_missingness_propensity

eps = 1e-06,
...

)

Arguments

dat A data.frame containing delta_col and x_cols. Can be any user-supplied
dataset; generate_clustered_mar() is used only in examples.

delta_col Name of missingness indicator column (1 observed, 0 missing).

x_cols Character vector of covariate column names used to predict missingness.

method One of "logistic", "grf", "boosting".

eps Clipping level applied to the estimated missingness propensity π̂(x), truncating
predictions to [ϵ, 1− ϵ].

... Extra arguments passed to the learner:

logistic passed to stats::glm.
grf passed to grf::probability_forest.
boosting passed to xgboost::xgb.train via params= and nrounds=.

Value

A list containing:

method The estimation method used.

fit The fitted missingness propensity model.

predict A function predict(x_new) that returns the estimated missingness propensity π̂(x) =
P(δ = 1 | x) evaluated at new covariate values x_new, with predictions clipped to [ϵ, 1− ϵ].

Examples

dat <- generate_clustered_mar(
n = 80, m = 4, d = 2,
alpha0 = -0.4, alpha = c(-1.0, 0.8),
target_missing = 0.30,
seed = 1

)
x_cols <- c("X1", "X2")

## Logistic regression
fit_log <- fit_missingness_propensity(dat, "delta", x_cols, method = "logistic")
p_log <- fit_log$predict(dat[, x_cols, drop = FALSE])
head(p_log)

## Compare with other methods
## True propensity under the generator
s <- attr(dat, "alpha_shift")
eta <- (-0.4) + (-1.0) * dat$X1 + 0.8 * dat$X2
pi_true <- 1 / (1 + exp(-pmin(pmax(eta, -30), 30)))



generate_clustered_mar 7

fit_grf <- fit_missingness_propensity(
dat, "delta", x_cols,
method = "grf", num.trees = 800, num.threads = 1

)
fit_xgb <- fit_missingness_propensity(

dat, "delta", x_cols,
method = "boosting",
nrounds = 300,
params = list(max_depth = 3, eta = 0.05, subsample = 0.8, colsample_bytree = 0.8),
nthread = 1

)

p_grf <- fit_grf$predict(dat[, x_cols, drop = FALSE])
p_xgb <- fit_xgb$predict(dat[, x_cols, drop = FALSE])

op <- par(mfrow = c(1, 3))
plot(pi_true, p_log, pch = 16, cex = 0.5,

xlab = "True pi(x)", ylab = "Estimated pi-hat(x)", main = "Logistic"); abline(0, 1, lwd = 2)
plot(pi_true, p_grf, pch = 16, cex = 0.5,

xlab = "True pi(x)", ylab = "Estimated pi-hat(x)", main = "GRF"); abline(0, 1, lwd = 2)
plot(pi_true, p_xgb, pch = 16, cex = 0.5,

xlab = "True pi(x)", ylab = "Estimated pi-hat(x)", main = "Boosting"); abline(0, 1, lwd = 2)
par(op)

generate_clustered_mar

Simulate clustered continuous outcomes with covariate-dependent
MAR missingness

Description

Simulates clustered data {(Xi,j , Yi,j , δi,j)} under a hierarchical subject-level model with covariate-
dependent Missing at Random (MAR) missingness: δ ⊥ Y | X . Covariates Xi,j are fully observed,
while outcomes Yi,j may be missing.

Data are generated according to the following mechanisms:

• Between-subject level: subject random intercepts bi ∼ N(0, σ2
b ) induce within-cluster de-

pendence, corresponding to latent subject-specific laws Pi.

• Outcomes: for each measurement j = 1, . . . ,mi,

Yi,j = X⊤
i,jβ + bi + εi,j ,

where, for each subject i, the within-cluster errors {εi,j}mi
j=1 are mutually independent with

εi,j ∼ N(0, σ2
ε) when rho = 0. When rho != 0, they follow a stationary first-order autore-

gressive process (AR(1)) within the cluster:

εi,j = ρ εi,j−1 + ηi,j , ηi,j ∼ N
(
0, σ2

ε(1− ρ2)
)
,

which implies Var(εi,j) = σ2
ε and Cov(εi,j , εi,j+k) = σ2

ερ
|k| for all k.



8 generate_clustered_mar

• MAR missingness: outcomes are observed with probability

Pr(δi,j = 1 | Xi,j) = logit−1(α0 + α⊤Xi,j),

which depends only on covariates, ensuring δ ⊥ Y | X . If target_missing is provided, the
intercept α0 is automatically calibrated (via a deterministic root-finding procedure on the ex-
pected missing proportion) so that the marginal missing proportion is close to target_missing.

Usage

generate_clustered_mar(
n,
m = 4L,
d = 2L,
beta = NULL,
sigma_b = 0.7,
sigma_eps = 1,
rho = 0,
hetero_gamma = 0,
x_dist = c("normal", "bernoulli", "uniform"),
x_params = NULL,
alpha0 = -0.2,
alpha = NULL,
target_missing = NULL,
seed = NULL

)

Arguments

n Number of clusters (subjects).

m Cluster size. Either a single positive integer (common mi = m) or an integer
vector of length n specifying mi for each subject.

d Covariate dimension.

beta Population regression coefficients for Y | X (length d). If NULL, defaults to
seq(0.5, 0.5 + 0.1*(d-1), by=0.1).

sigma_b SD of subject random intercept bi.

sigma_eps Marginal SD of within-subject errors εi,j .

rho AR(1) correlation parameter within cluster for εi,j .

hetero_gamma Optional heteroskedasticity parameter; a value of 0 yields the standard homoskedas-
tic model, while nonzero values induce covariate-dependent error variance through
the first covariate X1.

x_dist Distribution for covariates: "normal", "bernoulli", or "uniform".

x_params Optional list of distribution parameters for x_dist.

alpha0 Missingness intercept α0. If target_missing is not NULL, the effective inter-
cept becomes α0 + s, where s is a calibrated shift.

alpha Missingness slopes (length d). If NULL, defaults to zeros.



hcp_conformal_region 9

target_missing Target marginal missing proportion defined as the empirical average of the fitted
missing probabilities 1 − π(Xi,j) over all observations, where π(x) = Pr(δ =
1 | X = x). If NULL, no calibration.

seed Optional RNG seed.

Value

A data.frame in long format with one row per measurement:

id Cluster index.

j Within-cluster index.

Y Observed outcome; NA if missing.

Y_full Latent complete outcome.

delta Observation indicator (1 observed, 0 missing).

X1..Xd Covariates.

Attributes:

m_i Integer vector of cluster sizes (m1, . . . ,mn).

target_missing Target marginal missing proportion used for calibration, defined as the empirical
average of missing probabilities over all observations.

alpha_shift Calibrated global intercept shift s added to the missingness linear predictor α0+s+
α⊤Xi,j (present only when target_missing is provided).

missing_rate Sample missing rate N−1
∑

I(δi,j = 0). This may deviate from target_missing
due to Bernoulli sampling variability.

Examples

dat <- generate_clustered_mar(
n = 200, m = 5, d = 2,
alpha0 = -0.2, alpha = c(-1.0, 0.0),
target_missing = 0.30,
seed = 1

)
mean(dat$delta == 0) # ~0.30
attr(dat, "alpha_shift") # calibrated shift

hcp_conformal_region HCP conformal prediction region with repeated subsampling and re-
peated data splitting



10 hcp_conformal_region

Description

Constructs a marginal conformal prediction region for a new covariate value xn+1 under clustered
data with missing outcomes, following the HCP framework:

• (1) Model fitting. Fit a pooled conditional density model π̂(y | x) using fit_cond_density_quantile,
together with a marginal missingness propensity model p̂(x) = P(δ = 1 | x) using fit_missingness_propensity,
both estimated on a subject-level training split.

• (2) Subsampled calibration. Repeatedly construct calibration sets by randomly drawing one
observation per subject from the calibration split.

• (3) Weighted conformal scoring. Compute weighted conformal p-values over a candidate
grid using the nonconformity score R(x, y) = −π̂(y | x) and inverse-propensity weights
w(x) = 1/p̂(x) under a MAR assumption.

• (4) Aggregation. Aggregate dependent p-values across subsamples (B) and data splits (S)
using either the Cauchy combination test (CCT/ACAT) or the arithmetic mean.

The prediction region is returned as a subset of the supplied grid:

Ĉ(xn+1;α) = {y ∈ Y : pfinal(y) > α}.

Usage

hcp_conformal_region(
dat,
id_col,
y_col = "Y",
delta_col = "delta",
x_cols,
x_test,
y_grid,
alpha = 0.1,
train_frac = 0.5,
S = 5,
B = 5,
combine_B = c("cct", "mean"),
combine_S = c("cct", "mean"),
seed = NULL,
return_details = FALSE,
dens_method = c("rq", "qrf"),
dens_taus = seq(0.05, 0.95, by = 0.02),
dens_h = NULL,
enforce_monotone = TRUE,
tail_decay = TRUE,
prop_method = c("logistic", "grf", "boosting"),
prop_eps = 1e-06,
...

)



hcp_conformal_region 11

Arguments

dat A data.frame containing clustered observations. Must include id_col, y_col,
delta_col, and all columns in x_cols.

id_col Subject/cluster identifier column name.
y_col Outcome column name.
delta_col Missingness indicator column name (1 observed, 0 missing).
x_cols Covariate column names used for both density estimation and missingness propen-

sity.
x_test New covariate value(s). A numeric vector (treated as one row), or a numeric ma-

trix/data.frame with nrow(x_test)=K test points and ncol(x_test)=length(x_cols)
covariates.

y_grid Numeric vector of candidate y values at which to evaluate conformal p-values.
alpha Miscoverage level in (0,1). Region keeps y with p(y) > α.
train_frac Fraction of subjects assigned to training in each split.
S Number of independent subject-level splits.
B Number of subsamples per split (one observation per subject per subsample).
combine_B Combine p-values across B subsamples: "cct" (default) or "mean".
combine_S Combine p-values across S splits: "cct" (default) or "mean".
seed Optional seed for reproducibility.
return_details Logical; if TRUE, also return split-level p-values and split metadata.
dens_method Density/quantile engine for fit_cond_density_quantile: "rq" or "qrf".
dens_taus Quantile grid passed to fit_cond_density_quantile.
dens_h Bandwidth(s) passed to fit_cond_density_quantile.
enforce_monotone

Passed to fit_cond_density_quantile.
tail_decay Passed to fit_cond_density_quantile.
prop_method Missingness propensity method for fit_missingness_propensity: "logistic",

"grf", or "boosting".
prop_eps Clipping level for propensity predictions used by fit_missingness_propensity.
... Extra arguments passed to fit_missingness_propensity.

Value

If return_details=FALSE (default), a list with:

region Length-K list; region[[k]] is the subset of y_grid with p_final[k, ] > alpha.
lo_hi K x 2 matrix with columns c("lo","hi") giving min/max of region[[k]] (NA if empty).
p_final K x length(y_grid) matrix of final p-values on y_grid.
y_grid The candidate grid used.

If return_details=TRUE, also includes:

p_split An array with dimensions c(S, K, length(y_grid)) of split-level p-values.
split_meta Train subject IDs for each split.



12 hcp_predict_targets

Examples

dat <- generate_clustered_mar(n = 200, m = 4, d = 2, target_missing = 0.30, seed = 1)
y_grid <- seq(-4, 4, length.out = 200)
x_test <- matrix(c(0.2, -1.0), nrow = 1); colnames(x_test) <- c("X1", "X2")

res <- hcp_conformal_region(
dat, id_col = "id",
y_col = "Y", delta_col = "delta",
x_cols = c("X1", "X2"),
x_test = x_test,
y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)

## interval endpoints on the y-grid (outer envelope)
c(lo = min(res$region[[1]]), hi = max(res$region[[1]]))

hcp_predict_targets HCP prediction wrapper for multiple measurements with optional per-
patient Bonferroni

Description

Wraps hcp_conformal_region to produce conformal prediction regions for a collection of mea-
surements, possibly including multiple measurements per individual.

Based on the structure of the test dataset, the prediction mode is determined automatically as fol-
lows, where P denotes the number of patients (clusters) and M denotes the number of measure-
ments per patient:

• P = 1, M = 1: Predict a single patient with a single measurement.

• P = 1, M > 1: Predict a single patient with multiple measurements (e.g., repeated or longi-
tudinal measurements for the same patient). If per-patient simultaneous prediction is desired,
optional per-patient Bonferroni calibration can be applied.

• P > 1, M = 1: Predict multiple patients, each with a single measurement. Predictions are
performed independently at the nominal level α, without Bonferroni calibration.

• P > 1, M > 1: Predict multiple patients, each with multiple measurements. When per-
patient simultaneous coverage is desired, a Bonferroni correction can be applied by using an
effective level α/Mp for each measurement, yielding Bonferroni-adjusted marginal prediction
regions for patient p.



hcp_predict_targets 13

Usage

hcp_predict_targets(
dat,
test,
pid_col = "pid",
x_cols,
y_grid,
alpha = 0.1,
bonferroni = FALSE,
return_region = FALSE,
id_col = "id",
y_col = "Y",
delta_col = "delta",
...

)

Arguments

dat Training/calibration data passed to hcp_conformal_region.

test A data.frame of test measurements, where each row corresponds to a single
measurement. The test data must follow one of the four clustered settings P =
1,M = 1, P = 1,M > 1, P > 1,M = 1, or P > 1,M > 1, where P is the
number of patients (clusters) and M is the number of measurements per patient.
The data.frame must include a patient identifier specified by pid_col and all
covariate columns listed in x_cols. Repeated values of pid_col indicate mul-
tiple measurements (e.g., repeated or longitudinal measurements) for the same
patient.

pid_col Column in test giving the patient (cluster/subject) identifier. Default "pid".

x_cols Covariate column names (e.g., c("X1")).

y_grid Candidate y-grid passed to hcp_conformal_region.

alpha Nominal miscoverage level in (0,1) passed to hcp_conformal_region.

bonferroni Logical; if TRUE, apply per-patient Bonferroni only when a patient has multiple
test measurements (i.e., Mp > 1). If FALSE, always use level α.

return_region Logical; if TRUE, return the full region (subset of y_grid) for each row.
id_col, y_col, delta_col

Column names in dat for patient ID, outcome, and missingness indicator.

... Additional arguments forwarded to hcp_conformal_region (e.g., S, B, combine_B,
combine_S, dens_method, prop_method, seed).

Value

A list with:

pred A data.frame in the same row order as test. It contains all columns of test plus the effective
level alpha_eff and the prediction-band endpoints lo and hi for each measurement.



14 hcp_predict_targets

region If return_region=TRUE, a list of length nrow(test) where each element is the subset of
y_grid retained in the prediction region for the corresponding test row; otherwise NULL.

meta A list with summary information, including the number of patients P, the per-patient mea-
surement counts M_by_pid, and the settings alpha and bonferroni.

Note

When per-patient Bonferroni calibration is enabled and a patient has a large number of measure-
ments (e.g., Mp > 10), the effective level α/Mp may be very small, which can lead to extremely
wide prediction regions (potentially spanning the entire y_grid). This behavior is an inherent con-
sequence of Bonferroni adjustment and not a numerical issue.

In longitudinal or panel studies, a cluster corresponds to a single individual (subject), and within-
cluster points correspond to multiple time points or repeated measurements on the same individual.
In this setting, the time variable time can be treated as a generic covariate. In the examples below,
time is represented by X1.

Examples

## ------------------------------------------------------------
## Examples illustrating the four test-data settings:
## (P=1, M=1), (P=1, M>1), (P>1, M=1), and (P>1, M>1)
## ------------------------------------------------------------
set.seed(1)

## training data (fixed across all cases)
dat_train <- generate_clustered_mar(

n = 200, m = 4, d = 1,
x_dist = "uniform", x_params = list(min = 0, max = 10),
target_missing = 0.30,
seed = 1

)

y_grid <- seq(-6, 6, length.out = 201)

## Case 1: P=1, M=1 (one patient, one measurement)
test_11 <- data.frame(

pid = 1,
X1 = 2.5

)
out_11 <- hcp_predict_targets(

dat = dat_train,
test = test_11,
x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)
out_11$pred

## Case 2: P=1, M>1 (one patient, multiple measurements)



plot_hcp_intervals 15

test_1M <- data.frame(
pid = 1,
X1 = c(1, 3, 7, 9)

)
out_1M <- hcp_predict_targets(

dat = dat_train,
test = test_1M,
x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)
out_1M$pred

## Case 3: P>1, M=1 (multiple patients, one measurement each)
test_P1 <- data.frame(

pid = 1:4,
X1 = c(2, 4, 6, 8)

)
out_P1 <- hcp_predict_targets(

dat = dat_train,
test = test_P1,
x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)
out_P1$pred

## Case 4: P>1, M>1 (multiple patients, multiple measurements per patient)
test_PM <- data.frame(

pid = c(1,1, 2,2,2, 3,3),
X1 = c(1,6, 2,5,9, 3,8)

)
out_PM <- hcp_predict_targets(

dat = dat_train,
test = test_PM,
x_cols = "X1",
y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)
out_PM$pred

plot_hcp_intervals Plot HCP prediction intervals (band vs covariate or intervals by pa-
tient)



16 plot_hcp_intervals

Description

Unified plotting function for two common visualizations of HCP prediction intervals:

• mode="band": plot an interval band (lo/hi) versus a 1D covariate (e.g., time X1).

• mode="pid": plot one interval per patient on the x-axis (patients optionally sorted by a covari-
ate).

Usage

plot_hcp_intervals(
df,
mode = c("band", "pid"),
lo_col = "lo",
hi_col = "hi",
y_true_col = NULL,
y_true = NULL,
show_center = TRUE,
show_true = TRUE,
x_col = NULL,
pid_col = "pid",
x_sort_col = NULL,
max_patients = NULL,
...

)

Arguments

df A data.frame containing prediction results. It must include the interval endpoints
specified by lo_col and hi_col, and the covariate columns required by the
chosen plotting mode.

mode Plotting mode. Use "band" to visualize an interval band as a function of a
continuous covariate, or "pid" to visualize one prediction interval per patient
on the x-axis.

lo_col Name of the column containing the lower endpoint of the prediction interval.
Default is "lo".

hi_col Name of the column containing the upper endpoint of the prediction interval.
Default is "hi".

y_true_col Optional name of a column in df containing the true outcome values. Used for
overlaying truth points when show_true = TRUE.

y_true Optional numeric vector of true outcome values with length equal to nrow(df).
If provided, this overrides y_true_col.

show_center Logical; if TRUE, draw the midpoint of each interval (as a dashed line in mode =
"band" or as points in mode = "pid").

show_true Logical; if TRUE, overlay true outcome values when available.

x_col (mode = "band") Name of the covariate column used as the x-axis in the interval
band plot (e.g., time or another continuous predictor).



plot_hcp_intervals 17

pid_col (mode = "pid") Name of the column identifying patients (or clusters). Each
patient must appear exactly once in df. Default is "pid".

x_sort_col (mode = "pid") Optional covariate column used to order patients along the x-axis
(e.g., "X1"). If NULL, patients are ordered by their IDs.

max_patients (mode = "pid") Optional maximum number of patients to display. If specified,
only the first max_patients patients after sorting are plotted.

... Additional graphical parameters passed to plot, such as main, xlab, ylab,
xlim, or ylim.

Value

Invisibly returns the data.frame used for plotting:

• For mode = "band", the input df sorted by x_col.

• For mode = "pid", the input df sorted by pid_col or x_sort_col, if provided.

Examples

## ------------------------------------------------------------
## Two common plots:
## (A) one patient, multiple measurements -> interval band vs X1
## (B) multiple patients, one measurement -> intervals by patient (sorted by X1)
## ------------------------------------------------------------
dat_train <- generate_clustered_mar(

n = 200, m = 20, d = 1,
x_dist = "uniform", x_params = list(min = 0, max = 10),
hetero_gamma = 2.5,
target_missing = 0.30,
seed = 1

)
y_grid <- seq(-6, 10, length.out = 201)

## test data with latent truth
dat_test <- generate_clustered_mar(

n = 100, m = 20, d = 1,
x_dist = "uniform", x_params = list(min = 0, max = 10),
hetero_gamma = 2.5,
seed = 999

)

## ---------- Case A: P=1, M>1 (one patient, multiple measurements) ----------
pid <- dat_test$id[1]
idx <- which(dat_test$id == pid)
idx <- idx[order(dat_test$X1[idx])][1:10]
test_1M <- data.frame(pid = pid, X1 = dat_test$X1[idx], y_true = dat_test$Y_full[idx])

out_1M <- hcp_predict_targets(
dat = dat_train, test = test_1M,
x_cols = "X1", y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,



18 plot_hcp_intervals

seed = 1
)
plot_hcp_intervals(

out_1M$pred, mode = "band", x_col = "X1",
y_true_col = "y_true", show_true = TRUE,
main = "Case A: one patient, multiple time points (band vs time)"

)

## ---------- Case B: P>1, M=1 (multiple patients, one measurement each) ----------
## take one measurement per patient: j==1 for the first 20 patients
pids <- unique(dat_test$id)[1:20]
test_P1 <- subset(dat_test, id %in% pids & j == 1,

select = c(id, X1, Y_full))
names(test_P1) <- c("pid", "X1", "y_true")

out_P1 <- hcp_predict_targets(
dat = dat_train, test = test_P1,
x_cols = "X1", y_grid = y_grid,
alpha = 0.1,
S = 2, B = 2,
seed = 1

)
plot_hcp_intervals(

out_P1$pred, mode = "pid", pid_col = "pid", x_sort_col = "X1",
y_true_col = "y_true", show_true = TRUE,
main = "Case B: multiple patients, one time point (by patient)"

)



Index

fit_cond_density_quantile, 2, 10, 11
fit_missingness_propensity, 5, 10, 11

generate_clustered_mar, 7

hcp_conformal_region, 9, 12, 13
hcp_predict_targets, 12

plot, 17
plot_hcp_intervals, 15

19


	fit_cond_density_quantile
	fit_missingness_propensity
	generate_clustered_mar
	hcp_conformal_region
	hcp_predict_targets
	plot_hcp_intervals
	Index

