| Type: | Package | 
| Title: | Performs Genome-Wide Iterative Fine-Mapping for Non-Gaussian Data using GINA-X | 
| Version: | 0.1.0 | 
| Description: | Implements GINA-X, a genome-wide iterative fine-mapping method designed for non-Gaussian traits. It supports the identification of credible sets of genetic variants. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| LazyData: | false | 
| biocViews: | Software, StatisticalMethod, VariantAnnotation | 
| Imports: | GA (≥ 3.2), caret (≥ 6.0-86), memoise (≥ 1.1.0), Matrix (≥ 1.2-18), stats (≥ 4.2.2) | 
| Depends: | R (≥ 4.2.0) | 
| Suggests: | knitr, rmarkdown, formatR, rrBLUP, testthat (≥ 3.0.0) | 
| RoxygenNote: | 7.3.2 | 
| VignetteBuilder: | knitr | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-10-08 21:08:02 UTC; xushu | 
| Author: | Shuangshuang Xu  | 
| Maintainer: | Shuangshuang Xu <xshuangshuang@vt.edu> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-10-14 18:20:25 UTC | 
Performs GINA-X as described in the manuscript, Xu, Williams, Tegge, and Ferreira Genome-wide iterative fine-mapping for non-Gaussian data, Nature Genetics, Submitted.
Description
Performs GINA-X as described in the manuscript, Xu, Williams, Tegge, and Ferreira Genome-wide iterative fine-mapping for non-Gaussian data, Nature Genetics, Submitted.
Usage
GINAX(
  Y,
  Covariance,
  SNPs,
  family,
  Z = NULL,
  offset = NULL,
  FDR_Nominal = 0.05,
  maxiterations = 2000,
  runs_til_stop = 400
)
Arguments
Y | 
 The observed phenotypes, count or binary.  | 
Covariance | 
 A list of covariance matrices that are the covariance matrices of the random effects. This matches the list of design matrices in Z.  | 
SNPs | 
 The SNP matrix, where each column represents a single SNP encoded as the numeric coding 0, 1, 2. This is entered as a matrix object.  | 
family | 
 Specify if the response is count ("poisson") or binary ("bernoulli").  | 
Z | 
 A list of matrices specifying the design matrix of each random effect of interest.  | 
offset | 
 If family = "poisson", the offset of each ecotype, can be a vector or a number if the number of offset is the same for each ecotype. If family = "binomial", offset = NULL.  | 
FDR_Nominal | 
 The nominal false discovery rate for which SNPs are selected from in the screening step.  | 
maxiterations | 
 The maximum iterations the genetic algorithm in the model selection step iterates for, defaulted at 2000  | 
runs_til_stop | 
 The number of iterations at the same best model before the genetic algorithm in the model selection step converges, defaulted at 400  | 
Value
The column indices of SNPs that were in the best model identified by GINAX
Examples
data("Y_binary");data("SNPs");data("kinship")
n <- length(Y_binary)
covariance <- list()
covariance[[1]] <- kinship
## Not run: 
output_binary <- GINAX(Y=Y_binary, SNPs=SNPs,
                   Covariance=covariance, Z=NULL, family="bernoulli",
                   offset=NULL, FDR_Nominal = 0.05,
                  maxiterations = 1000, runs_til_stop = 200)
## End(Not run)
GINAX function
Description
GINAX function
Usage
GINAX_terminal(
  Y,
  kinship,
  Z,
  SNPs,
  family,
  offset = NULL,
  FDR.threshold,
  maxiterations,
  runs_til_stop
)
Value
GINAX result
PQL function
Description
PQL function
Usage
PQL(
  Y,
  Z,
  kinship,
  X = NULL,
  Xc = NULL,
  Xs = NULL,
  indices_X = NULL,
  indices_Xc = NULL,
  family,
  offset = NULL,
  postprob = NULL
)
Value
PQL estimate
Example Dataset4: SNPs
Description
This dataset contains all SNPs.
Usage
data(SNPs)
Format
A data frame with 328 rows and 9000 variables
Source
Generated for package example
Example Dataset3: Y_binary
Description
This dataset contains response variable (binary data).
Usage
data(Y_binary)
Format
A vector for binary data
Source
Generated for package example
Example Dataset2: Y_poisson
Description
This dataset contains response variable (count data).
Usage
data(Y_poisson)
Format
A vector for poisson data
Source
Generated for package example
PQL function for binary data
Description
PQL function for binary data
Usage
binomial_PQL(Y, X_sig1 = NULL, Beta, Z, Alpha)
Value
PQL estimate for binary data
Example Dataset1: kinship
Description
This dataset contains kinship matrix.
Usage
data(kinship)
Format
A matrix for kinship
Source
Generated for package example
likelihood function
Description
likelihood function
Usage
log_marginal_likelihood(k, x.tilde_m, y.tilde, D_inv, ydinvy, dinvy, g)
Value
likelihood
likelihood function for null
Description
likelihood function for null
Usage
log_marginal_likelihood_null(y.tilde, D_inv)
Value
likelihood
PQL function for count data
Description
PQL function for count data
Usage
poisson_PQL(Y, X_sig1 = NULL, Beta, Z, Alpha, offset)
Value
PQL estimate for poisson