Title: Inference for Infectious Disease Transmission in SIR Framework
Version: 1.2.1
Description: Model and estimate the model parameters for the spatial model of individual-level infectious disease transmission in Susceptible-Infected-Recovered (SIR) framework.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.1
LazyData: true
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Config/testthat/edition: 3
Imports: mvtnorm, psych, stats,MASS,numDeriv,Matrix
Depends: R (≥ 2.10)
NeedsCompilation: no
Packaged: 2024-06-04 16:28:29 UTC; ruwan
Author: Ruwani Herath [aut, cre], Leila Amiri [ctb], Mahmoud Torabi [ctb]
Maintainer: Ruwani Herath <ruwanirasanjalih@gmail.com>
Repository: CRAN
Date/Publication: 2024-06-04 17:30:14 UTC

Area level data

Description

The data which describes the sociodemographic characters (proportion of indigenous people, proportions of immigrants, proportion of low education, median household income) for 96 regions.

Usage

Area_Level_Data

Format

A data frame with 96 rows and 5 columns:

RHDA

Region name

Percentage_of_immigrants

percentage of immigrants in each region

Percentage_of_indigenous

percentage of indigenous people in each region

Proporton_of_Low_education

proportion of persons 15+ who have not graduated high school

Income

median household income

...


Individual level data

Description

The data which describes the Individual characteristics (gender, age group, infected status) and corresponding area details for 700 individuals.

Usage

Individual_Level_Data

Format

A data frame with 700 rows and 8 columns:

Disease_Status

Disease status of the individual

Region

The regioal health authority of the individual

Gender

Gender of the individual

Age_Group

Age group of the individual

Postal_code

postal code which the individual belong to

Longitde

longitude of the region

Latitude

latitude of the region

Region_Number

Region number assigned for each regional health authority

...


This function is used to estimate model parameters

Description

This function is used to estimate model parameters

Usage

Realdata_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  D,
  n,
  time,
  tau,
  lambda,
  alpha0,
  q1,
  q2,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  npar,
  I
)

Arguments

ITER

Number of iterations

zz

Number of Regions

lambda0

Spatial dependence

sigma0

precision

Di

Euclidean distance between susceptible individual and infectious individual

D

Neighborhood structure

n

total number of individuals

time

time

tau

tau

lambda

lambda ###

alpha0

intercept

q1

Number of variables corresponding to individual level data

q2

Number of variables corresponding to area level data

cov1

Individual level covariates

cov2

Area level covariates

phi

Spatial random effects

delta0

Spatial parameter

Nlabel

Label for each sample from the area

npar

number of parameters

I

Identity matrix

Value

Numerical values for estimates

Examples

Realdata_Finalmodel(2,4,0.2,0.5,
matrix(runif(400,min = 4,max = 20),nrow=20, byrow = TRUE),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),20,10,
sample(c(0,1),replace = TRUE, size = 20),rep(3,20),0.4,6,5,
matrix(runif(120, 0, 1),nrow=20,byrow=TRUE),
matrix(runif(20, 0, 1),nrow=4,byrow=TRUE),runif(4,min = 0, max = 1),2,
rep(1:4,each=5),15,diag(4))


Calculating the estimated values for the parameters using log-likelihood function

Description

Calculating the estimated values for the parameters using log-likelihood function

Usage

Sim_Estpar(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda1,
  sigma1,
  beta1,
  beta2,
  zz,
  time,
  n,
  tau,
  lambda,
  I,
  D,
  cov1,
  cov2
)

Arguments

Nlabel

Label for each sample from the area

phi

Spatial random effects

Di

Euclidean distance between susceptible individual and infectious individual

alpha1

intercept

delta

Spatial parameter

lambda1

Spatial dependence

sigma1

precision of spatial random effects

beta1

the parameter corresponding to the covariate associated with susceptible individual

beta2

the parameter corresponding to the covariate associated with area

zz

Number of areas

time

Time

n

Total number of individuals

tau

the set of infectious individuals at time t in the zth area

lambda

a vector containing the length of infectious period

I

identity matrix

D

Neighborhood structure

cov1

Individual level covariates

cov2

Area level covariates

Value

a list of the solutions for the estimations of the parameters

Examples

Sim_Estpar(rep(1:4,each=5),runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow = TRUE),0.4,3,0.2,0.5,1,1,4,10,
20,sample(c(0,1),replace = TRUE, size = 20),rep(3,20),diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1),runif(4, 0, 1))




This function calculates the value of the log-likelihood function

Description

This function calculates the value of the log-likelihood function

Usage

Sim_Loglik(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda,
  sigma1,
  beta1,
  beta2,
  time,
  n,
  zz,
  tau,
  lambda1,
  I,
  D,
  cov1,
  cov2
)

Arguments

Nlabel

Label for each sample from the area

phi

Spatial random effects

Di

Euclidean distance between susceptible individual and infectious individual

alpha1

intercept

delta

Spatial parameter

lambda

a vector containing the length of infectious period

sigma1

precision of spatial random effects

beta1

the parameter corresponding to the covariate associated with susceptible individual

beta2

the parameter corresponding to the covariate associated with area

time

time

n

Total number of individuals

zz

Number of areas

tau

the set of infectious individuals at time t in the zth area

lambda1

Spatial dependence

I

Identity matrix

D

matrix reflecting neighborhood structure

cov1

Individual level covariates

cov2

Area level covariates

Value

a numeric value for the log-likelihood

Examples

Sim_Loglik(rep(1:4,each=5), runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow=TRUE),0.4, 2,rep(3,20),0.5,1,1,
10,20,4,sample(c(0,1),replace = TRUE, size = 20),0.6,diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1), runif(4, 0, 1))


This function can use to estimate the model parameters using the initial values.

Description

This function can use to estimate the model parameters using the initial values.

Usage

Simulation_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  g,
  nSample,
  d,
  n,
  time,
  tau,
  lambda,
  alpha0,
  beta10,
  beta20,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  D,
  I
)

Arguments

ITER

Number of iterations

zz

Number of Regions

lambda0

initial value for Spatial dependence

sigma0

initial value for the precision of spatial random effects

Di

Euclidean distance between susceptible individual and infectious individual

g

Number of rows in the lattice

nSample

Number of individuals in each cell

d

infectious time units

n

total number of individuals

time

time

tau

the set of infectious individuals at time t in the zth area

lambda

a vector containing the length of infectious period

alpha0

initial value for the intercept

beta10

initial value for the parameter corresponding to the covariate associated with susceptible individual

beta20

initial value for the parameter corresponding to the area-level covariates corresponding to area

cov1

a vector of covariates associated with susceptible individual

cov2

a vector of area-level covariates corresponding to area

phi

Spatial random effects

delta0

Spatial parameter

Nlabel

Label for each sample from the area

D

matrix reflecting neighborhood structure

I

Identity matrix

Value

the estimated values for the model parameters

Examples

Simulation_Finalmodel(2,4,0.2,0.5,
matrix(runif(1600,min=4,max=20),nrow=40,byrow=TRUE),2,10,3,40,10,
sample(c(0,1),replace=TRUE,size=40),rep(3,40),0.4,1,1,runif(40,0,1),
runif(4,0,1),runif(4,min=0,max=1),2,rep(1:4,each=10),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
diag(4))



TwoWeek

Description

The simulated data for the date diagnosed and tau

Usage

TwoWeek

Format

A data frame with 700 rows and 2 columns:

date_diagnosed

The date which the disease diagnosed

V2

the week

...

mirror server hosted at Truenetwork, Russian Federation.