Golan et al. [1] defined normalized entropy for the signal, \(\mathbf{X}\boldsymbol{\beta}\), in the GME framework, as
\[\begin{align} \qquad \qquad \qquad \qquad \qquad S(\mathbf{\widehat{p}})=\frac{-\mathbf{\widehat{p}}' \text{ln}\mathbf{\widehat{p}}}{(K+1)\text{ln} M} \qquad \qquad \qquad \qquad \qquad (3) \end{align}\] where \(S(\mathbf{\widehat{p}})\in[0,1]\) and \(S(\mathbf{\widehat{p}})=1\) indicates perfect uncertainty, and \(S(\mathbf{\widehat{p}})=0\) indicates no uncertainty.
In the GCE framework it can be defined as
\[\begin{align} \qquad \qquad \qquad \qquad \qquad S(\mathbf{\widehat{p}})=\frac{-\mathbf{\widehat{p}}' \text{ln}\mathbf{\widehat{p}}}{-\mathbf{\widehat{q}}' \text{ln}\mathbf{\widehat{q}}} \qquad \qquad \qquad \qquad \qquad (4) \end{align}\]
but in this case the we can no longer state that \(S(\mathbf{\widehat{p}})\in[0,1]\).
GCEstim
package reports normalized entropies but it uses
always the definition in (3) independently of the framework used.
Consider dataGCE
(see “Generalized Maximum Entropy
framework” and Generalized
Cross Entropy framework”).
The GME estimation can be obtained, for instance, with
res.lmgce.100.GME <-
GCEstim::lmgce(
y ~ .,
data = dataGCE,
cv = TRUE,
cv.nfolds = 5,
support.signal = c(-100, 100),
support.signal.points = 5,
twosteps.n = 0,
seed = 230676
)
and the GCE estimation with
res.lmgce.100.GCE <-
GCEstim::lmgce(
y ~ .,
data = dataGCE,
cv = TRUE,
cv.nfolds = 5,
support.signal = c(-100, 100),
support.signal.points =
matrix(
c(
rep(1 / 5, 5),
c(0.1, 0.1, 0.6, 0.1, 0.1),
c(0.1, 0.1, 0.6, 0.1, 0.1),
rep(1 / 5, 5),
rep(1 / 5, 5),
rep(1 / 5, 5)
),
ncol = 5,
byrow = TRUE
),
twosteps.n = 0,
seed = 230676
)
The NormEnt
extracts the normalized entropy from the
models by default (model=TRUE
).
Each estimate has its own normalized entropy associated
(model=FALSE
)
This work was supported by Fundação para a Ciência e Tecnologia (FCT) through CIDMA and projects https://doi.org/10.54499/UIDB/04106/2020 and https://doi.org/10.54499/UIDP/04106/2020.