Type: | Package |
Title: | Estimation of Environmental Variables and Genetic Parameters |
Version: | 1.0.1 |
Date: | 2025-04-17 |
Maintainer: | Willyan Junior Adorian Bandeira <bandeira.wjab@gmail.com> |
Description: | Performs analyzes and estimates of environmental covariates and genetic parameters related to selection strategies and development of superior genotypes. It has two main functionalities, the first being about prediction models of covariates and environmental processes, while the second deals with the estimation of genetic parameters and selection strategies. Designed for researchers and professionals in genetics and environmental sciences, the package combines statistical methods for modeling and data analysis. This includes the plastochron estimate proposed by Porta et al. (2024) <doi:10.1590/1807-1929/agriambi.v28n10e278299>, Stress indices for genotype selection referenced by Ghazvini et al. (2024) <doi:10.1007/s10343-024-00981-1>, the Environmental Stress Index described by Tazzo et al. (2024) https://revistas.ufg.br/vet/article/view/77035, industrial quality indices of wheat genotypes (Szareski et al., 2019), <doi:10.4238/gmr18223>, Ear Indexes estimation (Rigotti et al., 2024), <doi:10.13083/reveng.v32i1.17394>, Selection index for protein and grain yield (de Pelegrin et al., 2017), <doi:10.4236/ajps.2017.813224>, Estimation of the ISGR - Genetic Selection Index for Resilience for environmental resilience (Bandeira et al., 2024) https://www.cropj.com/Carvalho_18_12_2024_825_830.pdf, estimation of Leaf Area Index (Meira et al., 2015) https://www.fag.edu.br/upload/revista/cultivando_o_saber/55d1ef202e494.pdf, Restriction of control variability (Carvalho et al., 2023) <doi:10.4025/actasciagron.v45i1.56156>, Risk of Disease Occurrence in Soybeans described by Engers et al. (2024) <doi:10.1007/s40858-024-00649-1> and estimation of genetic parameters for selection based on balanced experiments (Yadav et al., 2024) <doi:10.1155/2024/9946332>. |
License: | GPL (≥ 3) |
URL: | https://github.com/willyanjnr/EstimateBreed |
Depends: | R (≥ 4.1.0) |
Imports: | dplyr, ggplot2, hrbrthemes, broom, purrr, ggrepel, grid, httr, jsonlite, lubridate, nasapower, tidyr, viridis, cowplot, sommer, lme4, minque, utils, car, lmtest |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), roxygen2, DT |
VignetteBuilder: | knitr |
Encoding: | UTF-8 |
LazyData: | true |
LazyLoad: | true |
Language: | en-US |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-04-17 18:00:12 UTC; willy |
Author: | Willyan Junior Adorian Bandeira
|
Repository: | CRAN |
Date/Publication: | 2025-04-17 18:40:06 UTC |
Inbreeding coefficient
Description
Function for calculating the inbreeding coefficient
Usage
COI(var, VG, VF, generation = "all", verbose = FALSE)
Arguments
var |
Column with the variable name |
VG |
Column with genotypic variance |
VF |
Column with phenotypic variance |
generation |
Parameter to select the generation. Use 'all' to get the parameters for all the generations or 'F3', 'F4', 'F5' and 'F6' for just one of the generations. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Returns the total, additive and dominance variance values based on the variance components for a given variable.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman.
Examples
library(EstimateBreed)
var <- c("A","B","C","D","E")
VF <- c(2.5, 3.0, 2.8, 3.2, 2.7)
VG <- c(1.2, 1.5, 1.3, 1.6, 1.4)
data <- data.frame(var,VG,VF)
#Calculating for all generations
inbr1 <- with(data,COI(var,VG,VF,generation = "all"))
#Calculating for just one generation
inbr2 <- with(data,COI(var,VG,VF,generation = "F3"))
General Selection Gain Function
Description
Computes selection gain using different selection methods
Usage
SG(
Var,
h,
VF = NULL,
P = "1",
DS = NULL,
Year = NULL,
method = "pressure",
verbose = FALSE
)
Arguments
Var |
The column with the name of the variables of interest |
h |
The column with the restricted heritability values |
VF |
The column with the phenotypic variance values (optional) |
P |
The column with the progeny values or selection pressure (optional) |
DS |
The column with the selection differential values (optional) |
Year |
The column with the year of selection (optional) |
method |
The selection method: 'pressure', 'differential', 'genitor_control", or 'year_weighted' |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
A data frame with selection gain results
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "pressure")
SG(Var = c("A", "B", "C"), h = 0.5, DS = 1.5, method = "differential")
SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "genitor_control")
SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", Year = 5, method = "year_weighted")
Accumulated Thermal Sum
Description
Calculates the daily and accumulated thermal sum, considering the subtraction of the average air temperature by the lower cardinal temperature for each crop.
Usage
atsum(AAT, crop = "maize", lbt = NULL, verbose = FALSE, plot = FALSE)
Arguments
AAT |
The column with the average air temperature values. |
crop |
Parameter to define the culture. Use 'maize' for maize, 'soybean' for soybean, 'flax' for flaxseed, 'trit' for wheat or 'oat' for oat crop. |
lbt |
Parameter to define the value of the lower basal temperature to be
used in the calculation. If not informed, the function will use the values of
10, 5, 2, 2 and 0 |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graph of thermal accumulation if TRUE. |
Value
Returns the cumulative and total thermal sum considering the
cultivation cycle of the selected crop. Also presents the following parameters:
* Total Cycle
The number of cycle days, for verification.
* TS
The value of the total thermal sum, in daily degree days (GDD).
* TBi
The value used for the lower base temperature.
* General Parameters
Considering the reported average air temperature values, it returns
the maximum, minimum, and coefficient of variation.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("clima")
clima <- get("clima")[1:150, ]
with(clima,atsum(TMED,crop="maize"))
#Adjusting lower basal temperature manually
with(clima,atsum(TMED,crop="maize",lbt=12))
Dataset: Oat data
Description
Data set with oat genotypes and industry variables.
Usage
aveia
Format
A data.frame with 54 observations and 6 variables:
- GEN
14 white oat genotypes.
- BLOCO
Experiment blocks.
- NG2M
Number of grains larger than 2 mm.
- MG
Grain mass
- MC
Caryopsis dough
- RG
Grain yield (in kg per ha)
Source
Real field data for use.
Data: Climate Data Set for Predictions
Description
Average air temperature and relative humidity data for the period of one year, with time, day and month.
Usage
clima
Format
A data.frame with 8760 observations and 5 variables:
- MO
Month of the year.
- DY
Day of the year.
- HR
Time of the day.
- TMED
Average Air Temperature - in degree C.
- RH
Relative Humidity - in %.
Source
Data obtained from the Nasa Power platform (https://power.larc.nasa.gov/).
Data: Data: Endogamy Coefficient Data Set
Description
Data set of phenotypic and genotypic variance, heritability and differential selection for different variables.
Usage
coefend
Format
A data.frame with 7 observations and 5 variables:
- Var
Variable name.
- VF
Phenotypic Variance.
- VG
Genotypic Variance.
- h
Broad-sense heritability
- DS
Selection Differential
Source
Real data for use.
Standard Segregation
Description
Didactic table of standard segregation by generation
Usage
default_seg(verbose = TRUE)
Arguments
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Create a didactic table of standard segregation, considering allogamous and autogamous species and mutants. It shows the expected level of heterozygosity, probable number of genes, environmental effect and Wright's probabilistic coefficient.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
default_seg(verbose=TRUE)
Auxiliary function for calculating ISGR
Description
This function receives a dataframe with temperature and precipitation data and calculates the standard deviation of these parameters for each environment.
Usage
desv_clim(ENV, AAT, PREC)
Arguments
ENV |
Identification of each selection environment (to differentiate if there is more than one cultivation cycle). |
AAT |
Average air temperature (in degree Celsius) during the cycle in each environment. |
PREC |
Rainfall (in mm) during the cultivation cycle in each environment |
Value
A dataframe containing the identifier of the selection environment and the standard deviations for temperature and precipitation.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("desvamb")
head(desvamb)
#Use DPclim for the ISGR function to identify deviations correctly
DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC))
Data: Data set for calculating the environmental deviation
Description
Data set with average air temperature and precipitation values per environment
Usage
desvamb
Format
A data.frame with 449 observations and 3 variables:
- ENV
Selection environment.
- TMED
Average Air Temperature (in degree C).
- PREC
Precipitation (in mm)
Source
Real field data for use.
Allelic and genotype-environment interactions
Description
Didactic function - Examples of allelic and gene interactions
Usage
didint(type = NULL, ge = NULL)
Arguments
type |
Type of allelic interaction. Use 'ad' for additivity, 'dom' for complete dominance, 'domp' for partial dominance and 'sob' for overdominance. |
ge |
Type of GxE interaction. Use 'aus' for no interaction, 'simple' for simple interaction and 'complex' for complex interaction. |
Value
Plot graphs representing allelic and genotype x environment interactions.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
didint (type="ad")
didint (type="dom")
didint (type="domp")
didint (type="sob")
didint (ge="aus")
didint (ge="simple")
didint (ge="complex")
Data: GxE Interaction
Description
Data set with strains and test subjects from a GxE experiment.
Usage
genot
Format
A data.frame with 55 observations and 5 variables:
- GEN
Selected lines in a GXE experiment.
- ENV
Selection environments.
- NG
Number of grains measured in the lines.
- MG
Grain mass measured in the lines (in g)
- CICLO
Length of crop cycle (in days)
Source
Real field data for use.
Data Set for obtaining genetic parameters.
Description
Dataset with two breeding populations, 20 genotypes per population and three replicates per genotype.
Usage
genot2
Format
A data.frame with 60 observations and 4 variables:
- Pop
Column with population names.
- Gen
Column with genotype names.
- Rep
Column with replications.
- VAR1
Column with numerical values of the random variable.
Source
Simulated data for use.
Genetic parameters for selection
Description
Function for determining selection parameters, based on an experiment carried out on the rice crop. Intended for isolated evaluation of the performance of lines within a given population.
Usage
genpar(.data, GEN, REP, vars, K = 0.05, check = FALSE, verbose = FALSE)
Arguments
.data |
The name of the object containing data. |
GEN |
The column with the selected genotypes within the population. |
REP |
The column with the repetitions (if any). |
vars |
The column with the variable of interest. |
K |
Selection pressure (Default 0.05). |
check |
Logical argument. Checks the model's assumptions statistical if the value is equal to TRUE. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
A list containing the following components:
Environmental variance (sigmaE) |
The environmental variance (sigmaE) represents the variability in phenotypic traits attributable to environmental factors. This variance is important for understanding how environmental conditions influence the observed phenotype. |
Genotypic variance (sigmaG) |
The genotypic variance (sigmaG) reflects the variability in phenotypic traits attributable to genetic differences between individuals. It is crucial for assessing the genetic potential of a population for a specific trait. |
Phenotypic variance (sigmaP) |
The phenotypic variance (sigmaP) is the total observed variability in the phenotype, which is the sum of environmental and genotypic variances. This measure helps understand the overall range of variation observed in a given dataset. |
Environmental coefficient of variance (ECV) |
The environmental coefficient of variance (ECV) is the ratio of environmental variance to the mean of the phenotypic value, expressed as a percentage. It gives an idea of the magnitude of environmental variation relative to the mean value. |
Genotypic coefficient of variance (GCV) |
The genotypic coefficient of variance (GCV) is the ratio of genotypic variance to the mean of the phenotypic value, also expressed as a percentage. It is used to estimate how much genetic variability can be exploited for improving desirable traits. |
Phenotypic coefficient of variance (PCV) |
The phenotypic coefficient of variance (PCV) is the ratio of phenotypic variance to the mean of the phenotypic value, expressed as a percentage. It provides insight into the overall impact of both genetic and environmental factors on the observed variation. |
Heritability (h2b) |
Heritability (h2b) is the proportion of phenotypic variance attributable to genotypic variance. It indicates the potential for selecting specific traits within a population. |
Genetic advance (GA) |
Genetic advance (GA) represents the amount of genetic progress that can be achieved in one generation by selecting the best individuals for specific traits. |
Genetic advance as percentage of the mean (GAM) |
Genetic advance as a percentage of the mean (GAM) is a measure of how much genetic progress represents relative to the population's mean. This value helps assess the effectiveness of selection strategies. |
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Yadav, S. P. S., Bhandari, S., Ghimire, N. P., Mehata, D. K., Majhi, S. K., Bhattarai, S., Shrestha, S., Yadav, B., Chaudhary, P., & Bhujel, S. (2024). Genetic variability, character association, path coefficient, and diversity analysis of rice (Oryza sativa L.) genotypes based on agro-morphological traits. International Journal of Agronomy, 2024, Article ID 9946332. doi:10.1155/2024/9946332
Examples
library(EstimateBreed)
data("genot2")
#Geting parameters without cheking model assumptions
parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2"))
parameters$anova
parameters$gp
#Checking model assumptions
parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2"),check=TRUE)
parameters$anova
parameters$gp
Heterosis and Heterobeltiosis
Description
Calculation of heterosis and heterobeltiosis parameters of hybrids
Usage
het(GEN, GM, GP, PR, REP, param = "all", verbose = FALSE)
Arguments
GEN |
The column with the genotype name |
GM |
The column with the average of the maternal parent |
GP |
The column with the average of the paternal parent |
PR |
The column with the average of the progeny |
REP |
The column with the repetitions (if exists) |
param |
Value to determine the parameter to be calculated. Default is 'all'. To calculate heterosis only, use 'het'. To calculate only heterobeltiosis, use 'hetb'. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Returns heterosis values based on the performance of the tested parents and progenies. The standard error (SE) is also reported for each parameter.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("maize")
#Extract heterosis and heterobeltiosis
general <- with(maize,het(GEN,GM,GP,PR,REP,param="all"))
#Only extract heterosis
het <- with(maize,het(GEN,GM,GP,PR,REP,param = "het"))
#Extract only heterobeltiosis
hetb <- with(maize,het(GEN,GM,GP,PR,REP,param = "hetb"))
Hectolitre weight of cereals
Description
Useful function for characterizing the hectolitre weight (HW) of experiments with cereals.
Usage
hw(GEN, HL, crop = "trit", stat = "all")
Arguments
GEN |
The column with the genotype name |
HL |
Weight obtained on a 1qt lt scale, as determined by the Rules for Seed Analysis (RAS), Ministry of Agriculture, Livestock and Supply (2009). |
crop |
Argument for selecting culture. Use 'trit' for wheat, 'oat' for white oats, 'rye' for rye and 'barley' for barley |
stat |
Argument to select the function output type. Use 'all' to estimate the HW for all replicates, or 'mean' to extract the mean for each genotype. |
Value
Returns the estimated value for the hectoliter weight considering the selected cereal.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Brasil. Ministerio da Agricultura, Pecuaria e Abastecimento. Secretaria de Defesa Agropecuaria. Regras para Analise de Sementes. Brasilia: MAPA/ACS, 2009. 399 p. ISBN 978-85-99851-70-8.
Examples
library(EstimateBreed)
GEN <- rep(paste("G", 1:5, sep=""), each = 3)
REP <- rep(1:3, times = 5)
MG <- c(78.5, 80.2, 79.1, 81.3, 82.0, 80.8, 76.9, 78.1, 77.5, 83.2,
84.1, 82.9, 77.4, 78.9, 79.3)
data <- data.frame(GEN, REP, MG)
trit <- with(data,hw(GEN,MG,crop="trit"))
#Extract the average PH per genotype
trit <- with(data,hw(GEN,MG,crop="trit",stat="mean"))
Ear Indexes
Description
Estimating the viability index from the combination of two field variables.
Usage
indviab(
GEN,
var1,
var2,
ylab = "Index",
xlab = "Genotype",
stat = "all",
verbose = FALSE,
plot = FALSE
)
Arguments
GEN |
The column with the name of the genotypes |
var1 |
The column containing the first variable |
var2 |
The column containing the second variable |
ylab |
The name of the chart's Y axis |
xlab |
The name of the chart's X axis |
stat |
Logical argument. Use 'all' to return the values obtained for all observations or 'mean' to return the mean per genotype. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graphic if 'TRUE'. |
Value
Returns the index obtained between the reported variables. The higher the index, the better the genotype.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Rigotti, E. J., Carvalho, I. R., Loro, M. V., Pradebon, L. C., Dalla Roza, J. P., & Sangiovo, J. P. (2024). Seed and grain yield and quality of wheat subjected to advanced harvest using a physiological ripening process. Revista Engenharia na Agricultura - REVENG, 32, 54-64. doi:10.13083/reveng.v32i1.17394
Examples
library(EstimateBreed)
data("trigo")
#Ear viability index
index1 <- with(trigo,indviab(TEST,NGE,NEE))
#Ear harvest index
index2 <- with(trigo,indviab(TEST,MGE,ME))
#Spikelet deposition index in the ear
index3 <- with(trigo,indviab(TEST,NEE,CE))
Selection index for protein and grain yield
Description
Selection index for protein and grain yield (Pelegrin et al., 2017).
Usage
is_ptnerg(GEN, PTN, RG, verbose = TRUE)
Arguments
GEN |
The column with the name of the genotype |
PTN |
The column with the crude protein values |
RG |
The column with the grain yield values (in kg per ha) |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Returns an industrial wheat quality index based solely on protein and grain yield.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
de Pelegrin, A. J., Carvalho, I. R., Nunes, A. C. P., Demari, G. H., Szareski, V. J., Barbosa, M. H., ... & da Maia, L. C. (2017). Adaptability, stability and multivariate selection by mixed models. American Journal of Plant Sciences, 8(13), 3324.
Examples
library(EstimateBreed)
Gen <- c("G1", "G2", "G3", "G4", "G5")
PTN <- c(12.5, 14.2, 13.0, 11.8, 15.1)
RG <- c(3500, 4000, 3700, 3300, 4100)
data <- data.frame(Gen,PTN,RG)
iqptn <- with(data,is_ptnerg(Gen,PTN,RG))
Industrial quality of wheat
Description
Function for determining industrial quality indices of wheat genotypes, described by Szareski et al. (2019).
Usage
is_qindustrial(GEN, NQ, W, PTN, verbose = TRUE)
Arguments
GEN |
The column with the genotype name |
NQ |
The column with the falling number |
W |
The column with the gluten force (W) |
PTN |
The column with the protein values |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Determines the industrial quality index for wheat crops, when considering variables used to classify wheat cultivars.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Szareski, V. J., Carvalho, I. R., Kehl, K., Levien, A. M., Lautenchleger, F., Barbosa, M. H., ... & Aumonde, T. Z. (2019). Genetic and phenotypic multi-character approach applied to multivariate models for wheat industrial quality analysis. Genetics and Molecular Research, 18(3), 1-14.
Examples
library(EstimateBreed)
data("ptn")
with(ptn,is_qindustrial(Cult,NQ,W,PTN))
ISGR - Genetic Selection Index for Resilience
Description
Estimation of the selection index for environmental resilience (Bandeira et al., 2024).
Usage
isgr(GEN, ENV, NG, MG, CICLO, req = 3.5, stage = NULL)
Arguments
GEN |
Column referring to genotypes. Lines must have the prefix 'L' before the number. Ex: L139. |
ENV |
The column for the selection environment. |
NG |
Number of grains of all genotypes evaluated |
MG |
Grain mass of all genotypes evaluated |
CICLO |
Number of days in the cycle to define rainfall ideal (value of 3.5 mm per day). Can be changed manually in the 'req' argument. |
req |
Average daily water demand for the soybean crop (standard 3.5 mm). May change depending on the phenological stage. |
stage |
Parameter to define the phenological stage the crop is in Use 'veg' for vegetative and 'rep' for reproductive, if the evaluations have only been carried out in a given period. |
Value
The ISGR - Genetic Selection Index for Resilience defines the ability of genotypes to express their productivity components under the conditions of air temperature and rainfall offered by the environment. The lower the index, the more resilient the genotype.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Bandeira, W. J. A., Carvalho, I. R., Loro, M. V., da Silva, J. A. G., Dalla Roza, J. P., Scarton, V. D. B., Bruinsma, G. M. W., & Pradebon, L. C. (2024). Identifying soybean progenies with high grain productivity and stress resilience to abiotic stresses. Aust J Crop Sci, 18(12), 825-830.
Examples
library(EstimateBreed)
#Obtain environmental deviations
data("desvamb")
head(desvamb)
#Use DPclim for the ISGR function to identify deviations correctly
DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC))
#Calculate the ISGR
data("genot")
head(genot)
isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO))
#Define the water requirement per stage
isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO,req=5,stage="rep"))
Environmental Stress Index
Description
Determining the UTI (temperature and humidity index) from the air temperature and relative humidity values over a given period of time
Usage
itu(AAT, RH)
Arguments
AAT |
The column with the average air temperature values |
RH |
The column with the relative humidity values |
Value
Returns the stress condition based on the reported air temperature and relative humidity values, being: Non-stressful condition (ITU>=70), Heat stress condition (ITU between 71 and 78), Severe heat stress (ITU between 79 and 83), and Critical heat stress condition (ITU above 84).
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Tazzo, I. F., Tarouco, A. K., Allem Junior P. H. C., Bremm, C., Cardoso, L. S., & Junges, A. H. (2024). Indice de Temperatura e Umidade (ITU) ao longo do verao de 2021/2022 e estimativas dos impactos na bovinocultura de leite no Rio Grande do Sul, Brasil. Ciencia Animal Brasileira, 2,5, e-77035P.
Leaf Area Index (LAI)
Description
Utility function for estimating crop LAI
Usage
lai(GEN, W, L, TNL, TDL, crop = "soy", sp = 0.45, sden = 14, verbose = TRUE)
Arguments
GEN |
The column with the genotype name |
W |
The column with the width of the leaf (in meters). |
L |
The column with the length of the leaf (in meters). |
TNL |
The column with the total number of leaves. |
TDL |
The column with the total number of dry leaves. |
crop |
Crop sampled. Use 'soy' for soybean and 'maize' for maize, 'trit' for wheat, 'rice' for rice, 'bean' for bean, 'sunflower' for sunflower, 'cotton' for cotton, 'sugarcane' for sugarcane, 'potato' for potato and 'tomato' for tomato. |
sp |
Row spacing (Standard sp=0.45). |
sden |
Sowing density, in plants per linear meter (standard sden=14). |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Returns the accumulated leaf area, the potential leaf area index (considering the total number of leaves) and the actual leaf area index (making the adjustment considering the number of dry leaves) for each genotype
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Meira, D., Queiroz de Souza, V., Carvalho, I. R., Nardino, M., Follmann, D. N., Meier, C., Brezolin, P., Ferrari, M., & Pelegrin, A. J. (2015). Plastocrono e caracteres morfologicos da soja com habito de crescimento indeterminado. Revista Cultivando o Saber, 8(2), 184-200.
Examples
library(EstimateBreed)
data("leafarea")
#Crop selection
soy_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="soy"))
#Changing row spacing and sowing density
maize_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="maize",sp=0.45,sden=4))
Data Set for Leaf Area Index
Description
Data set with 10 genotypes and values for leaf length, leaf width, number of total leaves and number of dry leaves
Usage
leafarea
Format
A data.frame with 10 observations and 5 variables:
- GEN
Column with the genotypes.
- C
Leaf lenght
- L
Leaf width
- TNL
Total number of leaves.
- TDL
Total dry leavesh.
Source
Simulated data.
Data: Wheat Data Set with Protein and Grain Yield
Description
Data set with wheat genotypes, protein percentage and grain yield.
Usage
lin
Format
A data.frame with 24 observations and 7 variables:
- POP
Base population.
- MGP_MF
Phenotypic average of grain mass per plant.
- MGP_GP
Genotypic average of grain mass per plant.
- VF
Phenotypic variance
- VG
Genetic variance
- H2
Heritability in the broad sense
- Test
Witness parameters
Source
Real field data for use.
Estimates using polynomial equations.
Description
Determination of maximum technical efficiency (MTE) and plateau regression.
Usage
linearest(indep, dep, type = NULL, alpha = 0.05, verbose = FALSE)
Arguments
indep |
Name of the column with the independent variable. |
dep |
Name of the dependent variable column |
type |
Type of analysis to be carried out. Use 'MTE' to extract the maximum technical efficiency or 'plateau' for plateau regression. |
alpha |
Significance of the test. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Calculates the maximum technical efficiency (MTE) based on a quadratic polynomial model, if it is significant. The MTE is given by:
MTE = -\frac{\beta_1}{2\beta_2}
It also calculates plateau regression parameters, returning: - The plateau value:
Y_{plateau} = \beta_0 + \beta_1 X_{plateau} + \beta_2 X_{plateau}^2
- The growth rate:
\beta_1
- The inflection point:
X_{inflection} = -\frac{\beta_1}{2\beta_2}
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("mtcars")
met<-with(mtcars,linearest(wt,mpg,type = "MTE",verbose=TRUE))
Data: Maize Dataset
Description
Data set with progenies and maternal and paternal maize genitors.
Usage
maize
Format
A data.frame with 4 observations and 3 variables:
- P
Progenies.
- GM
Maternal Parent
- GP
Patern Parent
Source
Simulated Data.
Plotting the optimum and cardinal temperatures for crops
Description
Utility function for plotting graphs of thermal preferences for crops. It is necessary to inform the temperature values (minimum, average or maximum).
Usage
optemp(
VAR,
crop = NULL,
verbose = FALSE,
plot = TRUE,
ylab = "Meteorological Atribute",
xlab = "Days After Sowing"
)
Arguments
VAR |
The column with air temperature values (minimum, average or maximum). |
crop |
Parameter to define the culture. Use 'soybean' for soybean crop, 'maize' for maize crop and 'trit' for wheat crop. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graph of optimal temperatures if TRUE. |
ylab |
The name of the Y axis. |
xlab |
The name of the X axis. |
Value
Returns the parameters of lower basal and optimum temperature, upper basal and optimum temperature, maximum temperature and average temperature.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("clima")
clima <- get("clima")[1:150, ]
with(clima,optemp(TMED,crop="soybean"))
Soybean Plastochron Estimation Data Set
Description
Fictitious data set for estimating soybean plastochron based on on the number of nodes
Usage
pheno
Format
A data.frame with 135 observations and 5 variables:
- CICLO
Days in the soybean cycle.
- GEN
The column with the name of the genotype.
- TMED
The column with the average temperature values.
- EST
The column with the phenological stage.
- NN
The column with the number of nodes.
Source
Simulated data for use.
Soybean plastochron estimation
Description
Estimation of soybean plastochron using average air temperature and number of nodes
Usage
plast(GEN, AAT, STAD, NN, habit = "ind", verbose = FALSE, plot = FALSE)
Arguments
GEN |
The column with the genotype name. |
AAT |
The column with the average air temperature values. |
STAD |
The column with the phenological stages of soybean, as described by Fehr & Caviness (1977). |
NN |
The column with the number of nodes measured in field. |
habit |
Growth habit of the genotype (default = "ind"). Use "ind" for indeterminate and "det" for determinate. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Returns a graph with the linear models if TRUE. |
Value
If the growth habit is determined, the function returns a linear model for the V1 to R1 stages (Early Pheno) and a linear model for the R1 to R5 stages (Late Pheno). If the growth habit is indeterminate, returns three linear models: Early Pheno (V1 to R1), Intermediate Pheno (R1 to R3) and Late Pheno (R3 to R5).
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Porta, F. S. D., Streck, N. A., Alberto, C. M., da Silva, M. R., & Tura, E. F. (2024). Improving understanding of the plastochron of determinate and indeterminate soybean cultivars. Revista Brasileira de Engenharia Agricola e Ambiental, 28(10), e278299. doi:10.1590/1807-1929/agriambi.v28n10e278299
Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Iowa State University of Science and Technology Special Report, 80, 1-11.
Examples
library(EstimateBreed)
data("pheno")
mod1 <- with(pheno, plast(GEN,TMED,EST,NN,habit="ind",plot=TRUE))
mod1
Photothermal Index
Description
Calculation of the photothermal index based on average temperature and radiation
Usage
ptermal(DAY, AAT, RAD, PER, verbose = FALSE)
Arguments
DAY |
The column with the cycle days |
AAT |
The column with the average air temperature values |
RAD |
The column with the incident radiation values |
PER |
The column with the period (use VEG for vegetative and REP for reproductive) |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Retorna o ind fototermal
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Zanon, A. J., & Tagliapietra, E. L. (2022). Ecofisiologia da soja: Visando altas produtividades (2a ed.). Field Crops.
Examples
library(EstimateBreed)
data("termaldata")
termal <- with(termaldata,ptermal(Day,Temperature,Radiation,Period))
termal
Data: Wheat Dataset 1
Description
Data set with wheat cultivars and grain rheological characters.
Usage
ptn
Format
A data.frame with 360 observations and 5 variables:
- Cult
Wheat cultivars.
- Am
Sample identification number.
- NQ
Falling Number.
- W
Gluten Strength (W).
- PTN
Grain Protein.
Source
Real laboratory data.
Data: Wheat Dataset 2
Description
Wheat genotype, protein and grain yield data set
Usage
ptnrg
Format
A data.frame with 360 observations and 5 variables:
- CULTIVAR
Wheat cultivars.
- REP
Repetition number.
- PTN
Grain protein.
- RG
Grain yield (kg ha)
Source
Real field data.
Peeling Index and Industrial Yield
Description
Calculating the Hulling Index and Industrial Yield of White Oats
Usage
rend_ind(GEN, NG2M, MG, MC, RG, stat = "all", verbose = FALSE, ...)
Arguments
GEN |
The column with the name of the genotypes. |
NG2M |
The column with values for the number of grains larger than 2mm. |
MG |
The column with grain mass values. |
MC |
The column with karyopsis mass values. |
RG |
The column with the grain yield values (kg per ha). |
stat |
Logical argument. Use 'all' to keep all the observations or 'mean' to extract the overall average. |
verbose |
Logical argument. Runs the code silently if FALSE. |
... |
General parameters of ggplot2 for utilization |
Value
Returns the peeling index and industrial yield considering the standards desired by the industry.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
data("aveia")
# Calculate the industrial yield without extracting the average
with(aveia, rend_ind(GEN,NG2M,MG,MC,RG))
# Calculate the industrial yield by extracting the average per genotype
with(aveia, rend_ind(GEN,NG2M,MG,MC,RG,stat="mean"))
Restriction of control variability
Description
Method for restricting the variability of control proposed by Carvalho et al. (2023). It uses the restriction of the mean plus or minus one standard deviation. standard deviation, which restricts variation by removing asymmetric values.
Usage
restr(TEST, REP, Xi, scenario = NULL, zstat = NULL, verbose = FALSE)
Arguments
TEST |
The column with the name of the witness |
REP |
The column with the replications |
Xi |
The column with the observed value for a given genotype. |
scenario |
Scenario to be used for the calculation. Use 'original' to do not restrict the witnesses by the mean plus or minus the standard deviations, or 'restr' to apply the restriction. |
zstat |
Logical argument. Applies Z-notation normalization if 'TRUE'. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
Describes controls that were removed from the dataset to restrict variability.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Carvalho, I. R., Silva, J. A. G. da, Moura, N. B., Ferreira, L. L., Lautenchleger, F., & Souza, V. Q. de. (2023). Methods for estimation of genetic parameters in soybeans: An alternative to adjust residual variability. Acta Scientiarum. Agronomy, 45, e56156. doi:10.4025/actasciagron.v45i1.56156
Examples
library(EstimateBreed)
TEST <- rep(paste("T", 1:5, sep=""), each=3)
REP <- rep(1:3, times=5)
Xi <- rnorm(15, mean=10, sd=2)
data <- data.frame(TEST,REP,Xi)
#Apply the control variability constraint
Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = FALSE))
#Apply control variability restriction with normalization (Z statistic)
Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = TRUE))
Risk of Disease Occurrence in Soybeans
Description
Calculation of the Risk of Disease Occurrence in Soybeans as a Function of Variables meteorological variables (Engers et al., 2024).
Usage
risk(DAY, MONTH, AAT, RH, disease = "rust", verbose = FALSE, plot = FALSE)
Arguments
DAY |
The column for the day of the month. |
MONTH |
The column for the month of the year (numeric value). |
AAT |
The average air temperature column (in degree Celsius). |
RH |
The relative humidity column (in %). |
disease |
Define the soybean disease (Standard = 'rust'). |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Plot a graph of the accumulation (Default is F (FALSE)). |
Value
Returns the parameters of the incidence probability of the selected
disease in the soybean crop, being:
* RHrisk
Risk caused by relative humidity.
* TEMPrisk
Risk caused by air temperature.
* TOTALrisk
Product of the multiplication between RHrisk and TEMPrisk.
* RELrisk
Relative risk obtained from the highest value of TOTALrisk.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
de Oliveira Engers, L.B., Radons, S.Z., Henck, A.U. et al. Evaluation of a forecasting system to facilitate decision-making for the chemical control of Asina soybean rust. Trop. plant pathol. 49, 539-546 (2024). doi:10.1007/s40858-024-00649-1
Examples
library(EstimateBreed)
# Rust Risk Prediction
data("clima")
with(clima, risk(DY, MO, TMED, RH, disease = "rust"))
Stress indices for genotype selection
Description
Selection indices for genotypes conducted under stress conditions cited by Ghazvini et al. (2024).
Usage
stind(
GEN,
YS,
YC,
index = "ALL",
bygen = TRUE,
verbose = FALSE,
plot = FALSE,
xlab = "Genotype",
ylab = "Values",
...
)
Arguments
GEN |
The column with the genotypes to be selected. |
YS |
Productivity of the genotype without stress conditions. |
YC |
Genotype productivity under stressful conditions. |
index |
Index to be calculated (Standard 'ALL'). The indices to be used are: 'STI' - Stress Tolerance Index, 'YI' - Yield Index, 'GMP' - Geometric Mean Productivity, 'MP' - Mean Productivity, 'MH' - Harmonic Mean, 'SSI' - Stress Stability Index, 'YSI' - Yield Stability Index, 'RSI' - Relative Stress Index. |
bygen |
Returns the average of each genotype if 'TRUE'. Only in this way it will be possible to plot graphs. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Plot graph if equal to 'TRUE' (Standard 'FALSE'). |
xlab |
Adjust the title of the x-axis in the graph. |
ylab |
Adjust the title of the y-axis in the graph. |
... |
General ggplot2 parameters for graph customization. |
Value
Returns a table with the genotypes and the selected indices. The higher the index value, the more resilient the genotype.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Ghazvini, H., Pour-Aboughadareh, A., Jasemi, S.S. et al. A Framework for Selection of High-Yielding and Drought-tolerant Genotypes of Barley: Applying Yield-Based Indices and Multi-index Selecion Models. Journal of Crop Health 76, 601-616 (2024). doi:10.1007/s10343-024-00981-1
Examples
library(EstimateBreed)
data("aveia")
#General
index <- with(aveia,stind(GEN,MC,MG,index = "ALL",bygen=TRUE))
#Only the desired index
STI <- with(aveia,stind(GEN,MC,MG,index = "STI",bygen=TRUE))
Effective Population Size
Description
Estimates the effective population size (N_e
) adapted from Morais (1997).
The function provides two different calculation methods: 'classic' and 'alternative'.
The classic method follows the equation:
N_e = \frac{\left(\sum SI\right)^2}{\sum \left(\frac{SI^2}{NE}\right)}
The alternative method is calculated as:
N_e = \frac{4 \sum SI}{2 + \sum \left(\frac{SI}{NE}\right)}
Usage
tamef(GEN, SI, NE, remove_na = TRUE, method = "classic", verbose = TRUE)
Arguments
GEN |
The column with the name of the genotype (progeny). |
SI |
The column with the number of individuals selected. |
NE |
Number of individuals conducted during the selection period. |
remove_na |
Logical argument. If 'TRUE', missing values will be removed. |
method |
Character string specifying the calculation method. Options are classic' (default) or 'alternative'. 'classic' uses the variance-based method, while 'alternative' uses an adjusted method that accounts for reproductive variation. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Value
The result is the effective population size for any variable, based on the number of individuals conducted and selected.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
References
Morais, R. P. (1997). Effective population size and genetic diversity in improved populations of self-pollinated plants (Doctoral dissertation, University of Campinas).
Examples
library(EstimateBreed)
GEN <- c("Genotype1", "Genotype2", "Genotype3", "Genotype4", "Genotype5")
SI <- c(10, 15, 12, 18, 14)
NE <- c(100, 150, 120, 180, 140)
data <- data.frame(GEN,SI,NE)
with(data, tamef(GEN, SI, NE, method = "classic"))
Optimum conditions for pesticide application
Description
Determining the ideal time for pesticide application using TDELTA
Usage
tdelta(
LON,
LAT,
type = 2,
days = 7,
control = NULL,
details = FALSE,
verbose = TRUE,
dates = NULL,
plot = FALSE
)
Arguments
LON |
Longitude (in decimal) |
LAT |
Latitude (in decimal) |
type |
Type of analysis. Use 1 for forecast and 2 for temporal data. |
days |
Number of days (only use this argument if type=1). |
control |
Type of product to be applied. Use 'fung' for fungicide, 'herb' for herbicide, 'ins' for insecticides, 'bio' for biological products. |
details |
Returns the result in detail if TRUE. |
verbose |
Logical argument. Runs the code silently if FALSE. |
dates |
Only use this argument if type=2. Start and end date for obtaining weather data for a crop cycle. |
plot |
Logical argument. Plots a graphic if 'TRUE'. |
Value
Returns the ideal application times, considering each scenario. Taking as a parameter a TDELTA between 2 and 8, wind speed between 3 and 8, and no precipitation.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
# Forecasting application conditions
forecast <- tdelta(-53.6969,-28.0638,type=1,days=10,verbose=TRUE)
# Retrospective analysis of application conditions
retrosp <- tdelta(-53.6969,-28.0638,type=2,days=10,
dates=c("2023-01-01","2023-05-01"),
verbose=TRUE)
Data Set with air temperature and incident radiation.
Description
Data Set with air temperature and incident radiation.
Usage
termaldata
Format
A data.frame with 100 observations and 4 variables:
- Day
Column with cycle lenght.
- Period
Column with two periods (vegetative and reproductive).
- Temperature
Average air temperature values.
- Radiation
Incident radiation values.
Source
Simulated data for use.
Selection Differential (Mean and Deviations)
Description
Selection of Transgressive Genotypes - Selection Differential (SD)
Usage
transg(
Gen,
Var,
Control,
verbose = FALSE,
plot = FALSE,
ylab = "Selection",
xlab = "Genotypes"
)
Arguments
Gen |
The column with the genotype name |
Var |
The column with the values for the variable of interest |
Control |
The column with the value of the variable 'X' for the controls |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plots a graphic if 'TRUE'. |
ylab |
The name of the Y axis. |
xlab |
The name of the X axis. |
Value
Returns the general parameters and the genotypes selected for each treshold. Also plot a representative graph of the selected genotypes based on the mean and standard deviations.
Author(s)
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Examples
library(EstimateBreed)
Gen <- paste0("G", 1:20)
Var <- round(rnorm(20, mean = 3.5, sd = 0.8), 2)
Control <- rep(3.8, 20)
data <- data.frame(Gen,Var,Control)
transg_sel <- with(data,transg(Gen,Var,Control,verbose=FALSE,plot=TRUE))
Data: Wheat Dataset 3
Description
Data set from a wheat experiment with different herbicide management.
Usage
trigo
Format
A data.frame with 19 observations and 6 variables:
- TEST
Treatment identification.
- CE
Ear length.
- ME
Ear mass
- NGE
Number of grains on the cob.
- MGE
Grain mass of ear.
- NEE
Number of spikelets per spike
Source
Real field data for use.
Data Set for Seed Vigor Extraction
Description
Data set from experiment with wheat genotypes subjected to different sowing density.
Usage
vig
Format
A data.frame with 54 observations and 6 variables:
- Trat
Column with treatments.
- PC
First Count
- G
Germination percentage.
- CPA
Length of aerial part.
- RAD
Root length.
- MS
Seedling dry mass.
- EC
See what EC is.
Source
Real field data for use.