EasyABC: Efficient Approximate Bayesian Computation Sampling Schemes

Enables launching a series of simulations of a computer code from the R session, and to retrieve the simulation outputs in an appropriate format for post-processing treatments. Five sequential sampling schemes and three coupled-to-MCMC schemes are implemented.

Version: 1.6
Depends: R (≥ 2.14.0), abc
Imports: Rcpp, pls, mnormt, MASS, parallel, lhs, tensorA
LinkingTo: Rcpp
Suggests: knitr, rmarkdown
Published: 2025-12-18
DOI: 10.32614/CRAN.package.EasyABC
Author: Franck Jabot [aut], Nicolas Dumoulin [aut, cre], Thierry Faure [aut], Carlo Albert. [aut]
Maintainer: Nicolas Dumoulin <nicolas.dumoulin at inrae.fr>
License: GPL-3
URL: https://lisc.pages-forge.inrae.fr/easyabc/
NeedsCompilation: yes
Materials: ChangeLog
CRAN checks: EasyABC results

Documentation:

Reference manual: EasyABC.html , EasyABC.pdf
Vignettes: 'EasyABC': a 'R' package to perform efficient approximate Bayesian computation sampling schemes (source, R code)

Downloads:

Package source: EasyABC_1.6.tar.gz
Windows binaries: r-devel: EasyABC_1.5.2.zip, r-release: EasyABC_1.5.2.zip, r-oldrel: EasyABC_1.5.2.zip
macOS binaries: r-release (arm64): EasyABC_1.5.2.tgz, r-oldrel (arm64): EasyABC_1.5.2.tgz, r-release (x86_64): EasyABC_1.5.2.tgz, r-oldrel (x86_64): EasyABC_1.5.2.tgz
Old sources: EasyABC archive

Reverse dependencies:

Reverse imports: nlrx

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EasyABC to link to this page.

mirror server hosted at Truenetwork, Russian Federation.