EEMDelm: Ensemble Empirical Mode Decomposition and Its Variant Based ELM Model

Forecasting univariate time series with different decomposition based Extreme Learning Machine models. For method details see Yu L, Wang S, Lai KK (2008). <doi:10.1016/j.eneco.2008.05.003>, Parida M, Behera MK, Nayak N (2018). <doi:10.1109/ICSESP.2018.8376723>.

Version: 0.1.1
Depends: R (≥ 2.10)
Imports: forecast, nnfor, Rlibeemd
Published: 2022-08-09
DOI: 10.32614/CRAN.package.EEMDelm
Author: Girish Kumar Jha [aut, cre], Kapil Choudhary [aut, ctb], Rajeev Ranjan Kumar [ctb], Ronit Jaiswal [ctb]
Maintainer: Girish Kumar Jha <girish.stat at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: EEMDelm results

Documentation:

Reference manual: EEMDelm.pdf

Downloads:

Package source: EEMDelm_0.1.1.tar.gz
Windows binaries: r-devel: EEMDelm_0.1.1.zip, r-release: EEMDelm_0.1.1.zip, r-oldrel: EEMDelm_0.1.1.zip
macOS binaries: r-release (arm64): EEMDelm_0.1.1.tgz, r-oldrel (arm64): EEMDelm_0.1.1.tgz, r-release (x86_64): EEMDelm_0.1.1.tgz, r-oldrel (x86_64): EEMDelm_0.1.1.tgz
Old sources: EEMDelm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EEMDelm to link to this page.

mirror server hosted at Truenetwork, Russian Federation.