DCEM: Clustering Big Data using Expectation Maximization Star (EM*)
Algorithm
Implements the Improved Expectation Maximisation EM* and the traditional EM algorithm for clustering 
    big data (gaussian mixture models for both multivariate and univariate datasets). This version 
    implements the faster alternative-EM* that expedites convergence via structure based data segregation. 
    The implementation supports both random and K-means++ based initialization. Reference: Parichit Sharma, 
    Hasan Kurban, Mehmet Dalkilic (2022) <doi:10.1016/j.softx.2021.100944>. Hasan Kurban, 
    Mark Jenne, Mehmet Dalkilic (2016) <doi:10.1007/s41060-017-0062-1>.
| Version: | 
2.0.5 | 
| Depends: | 
R (≥ 3.2.0) | 
| Imports: | 
mvtnorm (≥ 1.0.7), matrixcalc (≥ 1.0.3), MASS (≥ 7.3.49), Rcpp (≥ 1.0.2) | 
| LinkingTo: | 
Rcpp | 
| Suggests: | 
knitr, rmarkdown | 
| Published: | 
2022-01-16 | 
| DOI: | 
10.32614/CRAN.package.DCEM | 
| Author: | 
Sharma Parichit [aut, cre, ctb],
  Kurban Hasan [aut, ctb],
  Dalkilic Mehmet [aut] | 
| Maintainer: | 
Sharma Parichit  <parishar at iu.edu> | 
| BugReports: | 
https://github.com/parichit/DCEM/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/parichit/DCEM | 
| NeedsCompilation: | 
yes | 
| Citation: | 
DCEM citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
DCEM results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=DCEM
to link to this page.