Type: | Package |
Title: | Censored Mixed-Effects Models with Different Correlation Structures |
Version: | 2.4.1 |
Date: | 2022-06-02 |
Author: | Rommy C. Olivari, Kelin Zhong, Aldo M. Garay and Victor H. Lachos |
Maintainer: | Rommy C. Olivari <rco1@de.ufpe.br> |
Description: | Left, right or interval censored mixed-effects linear model with autoregressive errors of order p or DEC correlation structure using the type-EM algorithm. The error distribution can be Normal or t-Student. It provides the parameter estimates, the standard errors and prediction of future observations (available only for the normal case). Olivari et all (2021) <doi:10.1080/10543406.2020.1852246>. |
Depends: | R (≥ 2.14) |
Imports: | numDeriv, stats, MASS, mnormt, tcltk, expm, relliptical, TruncatedNormal, LaplacesDemon |
NeedsCompilation: | no |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
RoxygenNote: | 7.2.0 |
Encoding: | UTF-8 |
Packaged: | 2022-06-02 19:09:43 UTC; Rommy |
Repository: | CRAN |
Date/Publication: | 2022-06-26 23:50:02 UTC |
Censored Mixed-Effects Models with Autoregressive Correlation Structure and DEC for Normal and t-Student Errors
Description
This functino fits left, right or intervalar censored mixed-effects linear model, with autoregressive errors of order p
, using the EM algorithm. It returns estimates, standard errors and prediction of future observations.
Usage
ARpMMEC.est(
y,
x,
z,
tt,
cc,
nj,
struc = "UNC",
order = 1,
initial = NULL,
nu.fixed = TRUE,
typeModel = "Normal",
cens.type = "left",
LI = NULL,
LS = NULL,
MaxIter = 200,
error = 1e-04,
Prev = FALSE,
step = NULL,
isubj = NULL,
xpre = NULL,
zpre = NULL
)
Arguments
y |
Vector |
x |
Design matrix of the fixed effects of order |
z |
Design matrix of the random effects of order |
tt |
Vector |
cc |
Vector of censoring indicators of length |
nj |
Vector |
struc |
|
order |
Order of the autoregressive process. Must be a positive integer value. |
initial |
List with the initial values in the next orden: betas,sigma2,alphas,phi and nu. If it is not indicated it will be provided automatically. Default is |
nu.fixed |
Logical. Should estimate the parameter "nu" for the t-student distribution?. If is False indicates the value in the list of initial values. Default is |
typeModel |
|
cens.type |
|
LI |
Vector censoring lower limit indicator of length |
LS |
Vector censoring upper limit indicator of length |
MaxIter |
The maximum number of iterations of the EM algorithm. Default is |
error |
The convergence maximum error. Default is |
Prev |
Indicator of the prediction process. Available at the moment only for the |
step |
Number of steps for prediction. Default is |
isubj |
Vector indicator of subject included in the prediction process. Default is |
xpre |
Design matrix of the fixed effects to be predicted. Default is |
zpre |
Design matrix of the random effects to be predicted. Default is |
Value
returns list of class “ARpMMEC”:
FixEffect |
Data frame with: estimate, standar errors and confidence intervals of the fixed effects. |
Sigma2 |
Data frame with: estimate, standar errors and confidence intervals of the variance of the white noise process. |
Phi |
Data frame with: estimate, standar errors and confidence intervals of the autoregressive parameters. |
RandEffect |
Data frame with: estimate, standar errors and confidence intervals of the random effects. |
nu |
the parameter "nu" for the t-student distribution |
Est |
Vector of parameters estimate (fixed Effects, sigma2, phi, random effects). |
SE |
Vector of the standard errors of (fixed Effects, sigma2, phi, random effects). |
Residual |
Vector of the marginal residuals. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
AICc |
Corrected Akaike information criterion. |
iter |
Number of iterations until convergence. |
Yfit |
Vector "y" fitted |
MI |
Information matrix |
Prev |
Predicted values (if xpre and zpre is not |
time |
Processing time. |
others |
The first and second moments of the random effect and vector Y |
References
Olivari, R. C., Garay, A. M., Lachos, V. H., & Matos, L. A. (2021). Mixed-effects models for censored data with autoregressive errors. Journal of Biopharmaceutical Statistics, 31(3), 273-294. doi:10.1080/10543406.2020.1852246
Examples
## Not run:
p.cens = 0.1
m = 10
D = matrix(c(0.049,0.001,0.001,0.002),2,2)
sigma2 = 0.30
phi = 0.6
beta = c(1,2,1)
nj=rep(4,10)
tt=rep(1:4,length(nj))
x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta))
z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1])
data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens)
teste1=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",MaxIter = 2)
teste2=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Student",MaxIter = 2)
xx=matrix(runif(6*length(beta),-1,1),6,length(beta))
zz=matrix(runif(6*dim(D)[1],-1,1),6,dim(D)[1])
isubj=c(1,4,5)
teste3=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",
MaxIter = 2,Prev=TRUE,step=2,isubj=isubj,xpre=xx,zpre=zz)
teste3$Prev
## End(Not run)
Generating Censored Autoregressive Dataset with Mixed Effects, for normal distribution.
Description
This function simulates a censored response variable with autoregressive errors of order p
, with mixed effect and a established censoring rate. This function returns the censoring vector and censored response vector.
Usage
ARpMMEC.sim(
m,
x = NULL,
z = NULL,
tt = NULL,
nj,
beta,
sigmae,
D,
phi,
struc = "ARp",
order = 1,
typeModel = "Normal",
p.cens = NULL,
n.cens = NULL,
cens.type = "left",
nu = NULL
)
Arguments
m |
Number of individuals |
x |
Design matrix of the fixed effects of order |
z |
Design matrix of the random effects of order |
tt |
Vector |
nj |
Vector |
beta |
Vector of values fixed effects. |
sigmae |
It's the value for sigma. |
D |
Covariance Matrix for the random effects. |
phi |
Vector of length |
struc |
Correlation structure. This must be one of |
order |
Order of the autoregressive process. Must be a positive integer value. |
typeModel |
|
p.cens |
Censoring percentage for the process. Default is |
n.cens |
Censoring level for the process. Default is |
cens.type |
|
nu |
degrees of freedom for t-Student distibution (nu > 0, maybe non-integer). |
Value
returns list:
cc |
Vector of censoring indicators. |
y_cc |
Vector of responses censoring. |
Examples
## Not run:
p.cens = 0.1
m = 10
D = matrix(c(0.049,0.001,0.001,0.002),2,2)
sigma2 = 0.30
phi = 0.6
beta = c(1,2,1)
nj=rep(4,10)
tt=rep(1:4,length(nj))
x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta))
z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1])
data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens)
y<-data$y_cc
cc<-data$cc
## End(Not run)