| Type: | Package | 
| Title: | Time Series Forecasting using ARIMA-ANN Hybrid Model | 
| Version: | 0.1.0 | 
| Depends: | R (≥ 2.3.1), stats,forecast, tseries | 
| Description: | Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>. | 
| Encoding: | UTF-8 | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| Packaged: | 2022-10-12 14:07:24 UTC; pc | 
| Author: | Ramasubramanian V. [aut, ctb], Mrinmoy Ray [aut, cre] | 
| Maintainer: | Mrinmoy Ray <mrinmoy4848@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-10-13 17:42:37 UTC | 
ARIMA-ANN hybrid model fitting
Description
The ARIMAANN function fit ARIMA-ANN hybrid model for time series data.
Usage
ARIMAANN(data,h)
Arguments
data | 
 Input univariate time series (ts) data.  | 
h | 
 The forecast horizon.  | 
Details
This package allows you to fit the ARIMA-ANN hybrid model.
Value
Test_Result | 
 Checking the suitability of data for hybrid modelling  | 
ARIMA coefficients | 
 Coefficients of the fitted ARIMA  | 
pvalues | 
 pvalues of the fitted ARIMA model  | 
ANN Summary | 
 Summary of the fitted ANN model on residuals obtained from the fitted ARIMA model  | 
MAPE | 
 Mean Absolute Percentage Error (MAPE) of the fitted hybrid model  | 
MSE | 
 Mean Square Error (MSE) of fitted hybrid model  | 
fitted | 
 Fitted values of hybrid model  | 
forecasted.values | 
 h step ahead forecasted values employing hybrid model  | 
Author(s)
Ramasubramanian V., Mrinmoy Ray
References
Zhang, G. P.Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing, 50 (2003), pp. 159-175.
See Also
auto.arima, nnetar
Examples
data=lynx
ARIMAANN(data,5)