library(boinet)
library(dplyr)
# Load additional packages for reporting
if (requireNamespace("gt", quietly = TRUE)) library(gt)
if (requireNamespace("ggplot2", quietly = TRUE)) library(ggplot2)This vignette demonstrates how to create complete, reproducible clinical trial reports using the boinet package with Quarto. The workflow covers everything from simulation to final report generation suitable for regulatory submissions, academic publications, and internal documentation.
# Extract operating characteristics data
extract_oc_data <- function(boinet_result) {
dose_levels <- names(boinet_result$n.patient)
data.frame(
dose_level = dose_levels,
toxicity_prob = as.numeric(boinet_result$toxprob),
efficacy_prob = as.numeric(boinet_result$effprob),
n_patients = as.numeric(boinet_result$n.patient),
selection_prob = as.numeric(boinet_result$prop.select),
stringsAsFactors = FALSE
)
}
# Create summary statistics
create_summary_stats <- function(boinet_result) {
oc_data <- extract_oc_data(boinet_result)
optimal_dose <- oc_data$dose_level[which.max(oc_data$selection_prob)]
list(
optimal_dose = optimal_dose,
max_selection_prob = max(oc_data$selection_prob),
early_stop_rate = as.numeric(boinet_result$prop.stop),
avg_duration = as.numeric(boinet_result$duration),
total_patients = sum(oc_data$n_patients),
design_type = class(boinet_result)[1]
)
}
# Create formatted text summaries
create_text_summary <- function(boinet_result) {
stats <- create_summary_stats(boinet_result)
sprintf(
"The %s design selected dose level %s in %.1f%% of trials, with an average trial duration of %.0f days and early stopping rate of %.1f%%.",
toupper(gsub("\\.", "-", stats$design_type)),
stats$optimal_dose,
stats$max_selection_prob,
stats$avg_duration,
stats$early_stop_rate
)
}
# Create design parameters table
create_design_table <- function(result) {
design_params <- data.frame(
Parameter = c("Target Toxicity Rate (φ)", "Target Efficacy Rate (δ)",
"Lower Toxicity Boundary (λ₁)", "Upper Toxicity Boundary (λ₂)",
"Efficacy Boundary (η₁)", "Early Stop Rate (%)",
"Average Duration (days)", "Toxicity Assessment Window (days)",
"Efficacy Assessment Window (days)", "Accrual Rate (days)"),
Value = c(result$phi, result$delta, result$lambda1, result$lambda2,
result$eta1, result$prop.stop, result$duration,
result$tau.T, result$tau.E, result$accrual),
stringsAsFactors = FALSE
)
# Format values
design_params$Value <- round(as.numeric(design_params$Value), 3)
if (gt_available) {
design_params %>%
gt() %>%
tab_header(
title = "TITE-BOIN-ET Design Parameters",
subtitle = paste("Based on", result$n.sim, "simulated trials")
) %>%
fmt_number(columns = "Value", decimals = 3) %>%
cols_align(align = "left", columns = "Parameter") %>%
cols_align(align = "center", columns = "Value")
} else {
# Fallback to basic table
print(design_params)
}
}
# Create operating characteristics table
create_oc_table <- function(result) {
dose_levels <- names(result$n.patient)
oc_data <- data.frame(
`Dose Level` = dose_levels,
`True Toxicity Probability` = round(as.numeric(result$toxprob), 3),
`True Efficacy Probability` = round(as.numeric(result$effprob), 3),
`Average N Treated` = round(as.numeric(result$n.patient), 1),
`Selection Probability (%)` = round(as.numeric(result$prop.select), 1),
check.names = FALSE
)
if (gt_available) {
oc_data %>%
gt() %>%
tab_header(
title = "Operating Characteristics",
subtitle = "TITE-BOIN-ET Design Simulation Results"
) %>%
fmt_number(columns = c("True Toxicity Probability", "True Efficacy Probability"), decimals = 3) %>%
fmt_number(columns = "Average N Treated", decimals = 1) %>%
fmt_number(columns = "Selection Probability (%)", decimals = 1) %>%
cols_align(align = "center", columns = everything()) %>%
cols_align(align = "left", columns = "Dose Level") %>%
tab_style(
style = cell_fill(color = "lightblue"),
locations = cells_body(
rows = `Selection Probability (%)` == max(`Selection Probability (%)`)
)
)
} else {
# Fallback to basic table
print(oc_data)
}
}# Create mock result for demonstration
boinet_result <- list(
toxprob = c("1" = 0.02, "2" = 0.08, "3" = 0.15, "4" = 0.25, "5" = 0.40),
effprob = c("1" = 0.10, "2" = 0.20, "3" = 0.35, "4" = 0.50, "5" = 0.65),
n.patient = c("1" = 8.2, "2" = 12.5, "3" = 15.8, "4" = 10.3, "5" = 7.2),
prop.select = c("1" = 5.2, "2" = 18.7, "3" = 42.1, "4" = 28.3, "5" = 5.7),
phi = 0.30, delta = 0.60, lambda1 = 0.03, lambda2 = 0.42, eta1 = 0.36,
tau.T = 28, tau.E = 42, accrual = 7, duration = 156.3, prop.stop = 3.2, n.sim = 1000
)
class(boinet_result) <- "tite.boinet"Here’s a complete Quarto document template for BOIN-ET analysis that
you can save as a separate .qmd file:
---
title: "BOIN-ET Clinical Trial Design Analysis"
subtitle: "Protocol ABC-2024-001: Novel Kinase Inhibitor"
author: "Biostatistics Team"
date: "2025-06-26"
format:
html:
theme: cosmo
toc: true
toc-depth: 3
code-fold: true
fig-width: 8
fig-height: 6
pdf:
toc: true
number-sections: true
fig-width: 7
fig-height: 5
docx:
toc: true
fig-width: 6.5
fig-height: 4.5
execute:
echo: false
warning: false
message: false
---The following demonstrates what would go in your actual Quarto report:
# Design specifications table
create_design_table(boinet_result)| TITE-BOIN-ET Design Parameters | |
| Based on 1000 simulated trials | |
| Parameter | Value |
|---|---|
| Target Toxicity Rate (φ) | 0.300 |
| Target Efficacy Rate (δ) | 0.600 |
| Lower Toxicity Boundary (λ₁) | 0.030 |
| Upper Toxicity Boundary (λ₂) | 0.420 |
| Efficacy Boundary (η₁) | 0.360 |
| Early Stop Rate (%) | 3.200 |
| Average Duration (days) | 156.300 |
| Toxicity Assessment Window (days) | 28.000 |
| Efficacy Assessment Window (days) | 42.000 |
| Accrual Rate (days) | 7.000 |
# Operating characteristics table
create_oc_table(boinet_result)| Operating Characteristics | ||||
| TITE-BOIN-ET Design Simulation Results | ||||
| Dose Level | True Toxicity Probability | True Efficacy Probability | Average N Treated | Selection Probability (%) |
|---|---|---|---|---|
| 1 | 0.020 | 0.100 | 8.2 | 5.2 |
| 2 | 0.080 | 0.200 | 12.5 | 18.7 |
| 3 | 0.150 | 0.350 | 15.8 | 42.1 |
| 4 | 0.250 | 0.500 | 10.3 | 28.3 |
| 5 | 0.400 | 0.650 | 7.2 | 5.7 |
# Extract key statistics for inline reporting
dose_levels <- names(boinet_result$n.patient)
selection_probs <- as.numeric(boinet_result$prop.select)
best_dose_idx <- which.max(selection_probs)
best_dose <- dose_levels[best_dose_idx]
max_selection <- max(selection_probs)
avg_duration <- as.numeric(boinet_result$duration)
early_stop <- as.numeric(boinet_result$prop.stop)
cat("Key findings:\n")
#> Key findings:
cat("- Optimal dose level:", best_dose, "\n")
#> - Optimal dose level: 3
cat("- Selection probability:", round(max_selection, 1), "%\n")
#> - Selection probability: 42.1 %
cat("- Average trial duration:", round(avg_duration, 0), "days\n")
#> - Average trial duration: 156 days
cat("- Early stopping rate:", round(early_stop, 1), "%\n")
#> - Early stopping rate: 3.2 %if (ggplot2_available) {
# Create data frame for plotting
plot_data <- data.frame(
dose_level = names(boinet_result$n.patient),
selection_prob = as.numeric(boinet_result$prop.select)
)
plot_data %>%
ggplot(aes(x = dose_level, y = selection_prob)) +
geom_col(fill = "steelblue", alpha = 0.7) +
geom_text(aes(label = paste0(round(selection_prob, 1), "%")),
vjust = -0.3) +
labs(
x = "Dose Level",
y = "Selection Probability (%)",
title = "TITE-BOIN-ET Dose Selection Performance"
) +
theme_minimal()
} else {
cat("ggplot2 package not available for visualization.\n")
}Dose selection probabilities
if (ggplot2_available) {
# Create risk-benefit plot data
rb_data <- data.frame(
dose_level = names(boinet_result$n.patient),
toxicity_prob = as.numeric(boinet_result$toxprob),
efficacy_prob = as.numeric(boinet_result$effprob),
selection_prob = as.numeric(boinet_result$prop.select)
)
rb_data %>%
ggplot(aes(x = toxicity_prob, y = efficacy_prob)) +
geom_point(aes(size = selection_prob), alpha = 0.7, color = "darkred") +
geom_text(aes(label = dose_level), vjust = -1.5) +
scale_size_continuous(name = "Selection\nProbability (%)", range = c(3, 12)) +
labs(
x = "True Toxicity Probability",
y = "True Efficacy Probability",
title = "Risk-Benefit Profile"
) +
theme_minimal()
} else {
cat("ggplot2 package not available for risk-benefit visualization.\n")
}Efficacy-toxicity profile
Quarto supports parameterized reports where you can pass values to customize the analysis.
Step 1: Add parameters to your YAML header:
---
title: "BOIN-ET Analysis Report"
params:
target_tox: 0.30
target_eff: 0.60
protocol_id: "ABC-001"
compound_name: "XYZ-123"
---
Step 2: Use parameters in your analysis code (in a real parameterized document):
# Access parameters like this:
# target_toxicity <- params$target_tox
# protocol_name <- params$protocol_id
Step 3: Render with custom parameters:
# quarto::quarto_render(
# "your_template.qmd",
# execute_params = list(
# target_tox = 0.25,
# target_eff = 0.65,
# protocol_id = "XYZ-002",
# compound_name = "New Drug"
# )
# )
# Demonstration of the concept using mock parameters
mock_params <- list(
target_tox = 0.30,
target_eff = 0.60,
protocol_id = "ABC-001",
compound_name = "XYZ-123"
)
cat("Parameterized report demonstration:\n")
#> Parameterized report demonstration:
cat("Protocol:", mock_params$protocol_id, "\n")
#> Protocol: ABC-001
cat("Compound:", mock_params$compound_name, "\n")
#> Compound: XYZ-123
cat("Target toxicity:", mock_params$target_tox, "\n")
#> Target toxicity: 0.3
cat("Target efficacy:", mock_params$target_eff, "\n")
#> Target efficacy: 0.6
# This shows how you could customize analysis based on parameters
cat("\nCustomized analysis settings:\n")
#>
#> Customized analysis settings:
if (mock_params$target_tox < 0.25) {
cat("- Conservative toxicity approach\n")
} else if (mock_params$target_tox > 0.35) {
cat("- Aggressive toxicity approach\n")
} else {
cat("- Standard toxicity approach\n")
}
#> - Standard toxicity approach# Demonstrate the concept with executable code
scenarios <- list(
conservative = list(phi = 0.25, delta = 0.50, name = "Conservative"),
standard = list(phi = 0.30, delta = 0.60, name = "Standard"),
aggressive = list(phi = 0.35, delta = 0.70, name = "Aggressive")
)
# Function to create scenario-specific summaries
create_scenario_summary <- function(scenario) {
sprintf(
"Scenario: %s (φ=%.2f, δ=%.2f)",
scenario$name, scenario$phi, scenario$delta
)
}
# Generate summaries for all scenarios
scenario_summaries <- lapply(scenarios, create_scenario_summary)
cat("Available scenarios:\n")
#> Available scenarios:
for(summary in scenario_summaries) {
cat("-", summary, "\n")
}
#> - Scenario: Conservative (φ=0.25, δ=0.50)
#> - Scenario: Standard (φ=0.30, δ=0.60)
#> - Scenario: Aggressive (φ=0.35, δ=0.70)For batch processing, you would typically:
quarto::quarto_render() with different
execute_params for each scenarioShow different content based on results:
# Extract results for conditional logic
oc_data <- extract_oc_data(boinet_result)
max_selection_prob <- max(oc_data$selection_prob)
optimal_dose <- oc_data$dose_level[which.max(oc_data$selection_prob)]
# Conditional content based on results
if (max_selection_prob > 40) {
recommendation <- "Strong evidence for optimal dose identification"
confidence_level <- "High"
} else if (max_selection_prob > 25) {
recommendation <- "Moderate evidence for dose selection"
confidence_level <- "Moderate"
} else {
recommendation <- "Weak evidence - consider design modifications"
confidence_level <- "Low"
}
cat("Recommendation Confidence:", confidence_level, "\n")
#> Recommendation Confidence: High
cat("Analysis Conclusion:", recommendation, "\n")
#> Analysis Conclusion: Strong evidence for optimal dose identification
cat(sprintf("The optimal dose level %s was selected in %.1f%% of simulations.\n",
optimal_dose, max_selection_prob))
#> The optimal dose level 3 was selected in 42.1% of simulations.Use meaningful YAML headers with appropriate output formats for your audience.
cache: true for expensive computationsecho: false to hide code in final reportseval: false for demonstration code# Include session information
cat("R version:", R.version.string, "\n")
#> R version: R version 4.3.3 (2024-02-29 ucrt)
cat("boinet version:", as.character(packageVersion("boinet")), "\n")
#> boinet version: 1.4.0
if (gt_available) {
cat("gt version:", as.character(packageVersion("gt")), "\n")
}
#> gt version: 1.0.0
if (ggplot2_available) {
cat("ggplot2 version:", as.character(packageVersion("ggplot2")), "\n")
}
#> ggplot2 version: 3.5.1
# Document analysis timestamp
cat("Analysis completed:", format(Sys.time(), "%Y-%m-%d %H:%M:%S"), "\n")
#> Analysis completed: 2025-06-26 15:04:06Consider your target audience and output format when designing tables and figures.
# Function to create standardized clinical report content
create_clinical_report_content <- function(boinet_result, protocol_info) {
# Extract key information
oc_data <- extract_oc_data(boinet_result)
stats <- create_summary_stats(boinet_result)
# Create content structure
content <- list(
title = sprintf("Protocol %s: %s Analysis",
protocol_info$id, protocol_info$compound),
summary = create_text_summary(boinet_result),
key_findings = list(
optimal_dose = stats$optimal_dose,
selection_prob = round(stats$max_selection_prob, 1),
duration = round(stats$avg_duration, 0),
early_stop = round(stats$early_stop_rate, 1)
),
oc_data = oc_data
)
return(content)
}
# Example usage
protocol_info <- list(id = "XYZ-2024-001", compound = "Novel Kinase Inhibitor")
demo_result <- boinet_result
report_content <- create_clinical_report_content(demo_result, protocol_info)
cat("Report title:", report_content$title, "\n")
#> Report title: Protocol XYZ-2024-001: Novel Kinase Inhibitor Analysis
cat("Summary:", report_content$summary, "\n")
#> Summary: The TITE-BOINET design selected dose level 3 in 42.1% of trials, with an average trial duration of 156 days and early stopping rate of 3.2%.# Function to create regulatory-style formatting
create_regulatory_content <- function(boinet_result, submission_info) {
stats <- create_summary_stats(boinet_result)
# Regulatory-style summary
reg_summary <- sprintf(
"Study %s evaluated %d dose levels using a %s design. The recommended Phase II dose is %s, selected in %s%% of %d simulated trials.",
submission_info$study_id,
length(names(boinet_result$n.patient)),
toupper(gsub("\\.", "-", stats$design_type)),
stats$optimal_dose,
format(stats$max_selection_prob, digits = 3),
boinet_result$n.sim
)
return(list(
summary = reg_summary,
table_title = sprintf("Table %s: Operating Characteristics", submission_info$table_number),
stats = stats
))
}
# Example usage
submission_info <- list(study_id = "ABC-123-001", table_number = "14.2.1")
demo_result <- boinet_result
reg_content <- create_regulatory_content(demo_result, submission_info)
cat("Regulatory summary:", reg_content$summary, "\n")
#> Regulatory summary: Study ABC-123-001 evaluated 5 dose levels using a TITE-BOINET design. The recommended Phase II dose is 3, selected in 42.1% of 1000 simulated trials.# Check required packages
required_packages <- c("boinet", "dplyr")
optional_packages <- c("gt", "ggplot2", "knitr", "rmarkdown")
check_package_status <- function(packages, required = TRUE) {
status <- sapply(packages, function(pkg) {
requireNamespace(pkg, quietly = TRUE)
})
missing <- names(status)[!status]
if (length(missing) > 0) {
cat(ifelse(required, "Missing required", "Missing optional"), "packages:",
paste(missing, collapse = ", "), "\n")
cat("Install with: install.packages(c('", paste(missing, collapse = "', '"), "'))\n")
} else {
cat("All", ifelse(required, "required", "optional"), "packages available\n")
}
}
check_package_status(required_packages, TRUE)
#> All required packages available
check_package_status(optional_packages, FALSE)
#> All optional packages available
# Check Quarto availability
if (quarto_available) {
cat("✓ Quarto CLI available\n")
} else {
cat("⚠ Quarto CLI not found. Install from: https://quarto.org\n")
}
#> ✓ Quarto CLI available# Tips for handling large simulations
check_result_size <- function(result) {
size_mb <- object.size(result) / (1024^2)
cat(sprintf("Result object size: %.1f MB\n", size_mb))
if (size_mb > 50) {
cat("⚠ Large result object detected. Consider:\n")
cat(" - Using cache: true in chunks\n")
cat(" - Reducing n.sim for development\n")
cat(" - Extracting only needed data\n")
} else {
cat("✓ Result size is manageable\n")
}
}
# Use the demo result we created earlier
demo_result <- boinet_result
check_result_size(demo_result)
#> Result object size: 0.0 MB
#> ✓ Result size is manageable
# Memory-efficient data extraction
extract_minimal_data <- function(result) {
list(
oc_summary = data.frame(
dose = names(result$n.patient),
selection_prob = as.numeric(result$prop.select),
stringsAsFactors = FALSE
),
key_stats = list(
optimal_dose = names(result$prop.select)[which.max(result$prop.select)],
duration = result$duration,
early_stop = result$prop.stop
)
)
}
minimal_data <- extract_minimal_data(demo_result)
cat("Minimal data extracted successfully\n")
#> Minimal data extracted successfullyThe boinet package provides comprehensive support for Quarto-based reporting workflows, enabling:
This workflow ensures that BOIN-ET analysis results can be effectively communicated to clinical teams, regulatory agencies, and academic audiences while maintaining full reproducibility and professional presentation standards.
For basic result formatting, see the result-formatting
vignette. For publication-ready tables, see the
gt-integration vignette.