A C D E F G H I K L M N P R S T U V W X misc
| accuracy | Compute accuracy and precision |
| accuracy.data.frame | Compute accuracy and precision |
| accuracy.DataFrameStack | Compute accuracy and precision |
| ana | Flow anamorphosis transform Compute a transformation that gaussianizes a certain data set |
| anaBackward | Backward gaussian anamorphosis backward transformation to multivariate gaussian scores |
| anaForward | Forward gaussian anamorphosis forward transformation to multivariate gaussian scores |
| anis2D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
| anis3D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
| AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
| AnisotropyScaling | Convert to anisotropy scaling matrix |
| anis_GSLIBpar2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
| as.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
| as.AnisotropyRangeMatrix.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
| as.AnisotropyRangeMatrix.AnisotropyScaling | Force a matrix to be anisotropy range matrix, |
| as.AnisotropyRangeMatrix.default | Force a matrix to be anisotropy range matrix, |
| as.AnisotropyScaling | Convert to anisotropy scaling matrix |
| as.AnisotropyScaling.AnisotropyRangeMatrix | Convert to anisotropy scaling matrix |
| as.AnisotropyScaling.AnisotropyScaling | Convert to anisotropy scaling matrix |
| as.AnisotropyScaling.numeric | Convert to anisotropy scaling matrix |
| as.array.DataFrameStack | Convert a stacked data frame into an array |
| as.CompLinModCoReg | Recast a model to the variogram model of package "compositions" |
| as.CompLinModCoReg.CompLinModCoReg | Recast a model to the variogram model of package "compositions" |
| as.CompLinModCoReg.LMCAnisCompo | Recast a model to the variogram model of package "compositions" |
| as.DataFrameStack | Create a data frame stack |
| as.DataFrameStack.array | Create a data frame stack |
| as.DataFrameStack.data.frame | Create a data frame stack |
| as.DataFrameStack.list | Create a data frame stack |
| as.directorVector | Express a direction as a director vector |
| as.directorVector.azimuth | Express a direction as a director vector |
| as.directorVector.azimuthInterval | Express a direction as a director vector |
| as.directorVector.default | Express a direction as a director vector |
| as.function.gmCgram | Convert a gmCgram object to an (evaluable) function |
| as.gmCgram | Convert theoretical structural functions to gmCgram format |
| as.gmCgram.default | Convert theoretical structural functions to gmCgram format |
| as.gmCgram.LMCAnisCompo | Convert theoretical structural functions to gmCgram format |
| as.gmCgram.variogramModel | Convert theoretical structural functions to gmCgram format |
| as.gmCgram.variogramModelList | Convert theoretical structural functions to gmCgram format |
| as.gmEVario | Convert empirical structural function to gmEVario format |
| as.gmEVario.default | Convert empirical structural function to gmEVario format |
| as.gmEVario.gstatVariogram | Convert empirical structural function to gmEVario format |
| as.gmEVario.logratioVariogram | Convert empirical structural function to gmEVario format |
| as.gmEVario.logratioVariogramAnisotropy | Convert empirical structural function to gmEVario format |
| as.gmSpatialModel | Recast spatial object to gmSpatialModel format |
| as.gmSpatialModel.default | Recast spatial object to gmSpatialModel format |
| as.gmSpatialModel.gstat | Recast spatial object to gmSpatialModel format |
| as.gstat | Convert a regionalized data container to gstat |
| as.gstat-method | Conditional spatial model data container |
| as.gstat.default | Convert a regionalized data container to gstat |
| as.gstatVariogram | Represent an empirical variogram in "gstatVariogram" format |
| as.gstatVariogram.default | Represent an empirical variogram in "gstatVariogram" format |
| as.gstatVariogram.gmEVario | Represent an empirical variogram in "gstatVariogram" format |
| as.gstatVariogram.logratioVariogram | Represent an empirical variogram in "gstatVariogram" format |
| as.gstatVariogram.logratioVariogramAnisotropy | Represent an empirical variogram in "gstatVariogram" format |
| as.list.DataFrameStack | Convert a stacked data frame into a list of data.frames |
| as.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
| as.LMCAnisCompo.CompLinModCoReg | Recast compositional variogram model to format LMCAnisCompo |
| as.LMCAnisCompo.gmCgram | Recast compositional variogram model to format LMCAnisCompo |
| as.LMCAnisCompo.gstat | Recast compositional variogram model to format LMCAnisCompo |
| as.LMCAnisCompo.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
| as.LMCAnisCompo.variogramModelList | Recast compositional variogram model to format LMCAnisCompo |
| as.logratioVariogram | Recast empirical variogram to format logratioVariogram |
| as.logratioVariogram.gmEVario | Recast empirical variogram to format logratioVariogram |
| as.logratioVariogram.gstatVariogram | Recast empirical variogram to format logratioVariogram |
| as.logratioVariogram.logratioVariogram | Recast empirical variogram to format logratioVariogram |
| as.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" |
| as.logratioVariogramAnisotropy.default | Convert empirical variogram to "logratioVariogramAnisotropy" |
| as.logratioVariogramAnisotropy.logratioVariogram | Convert empirical variogram to "logratioVariogramAnisotropy" |
| as.logratioVariogramAnisotropy.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" |
| as.variogramModel | Convert an LMC variogram model to gstat format |
| as.variogramModel.CompLinModCoReg | Convert an LMC variogram model to gstat format |
| as.variogramModel.default | Convert an LMC variogram model to gstat format |
| as.variogramModel.gmCgram | Convert an LMC variogram model to gstat format |
| as.variogramModel.LMCAnisCompo | Convert an LMC variogram model to gstat format |
| CholeskyDecomposition | Create a parameter set specifying a LU decomposition simulation algorithm |
| coloredBiplot.genDiag | Colored biplot for gemeralised diagonalisations Colored biplot method for objects of class genDiag |
| constructMask | Constructs a mask for a grid |
| DataFrameStack | Create a data frame stack |
| DataFrameStack.array | Create a data frame stack |
| DataFrameStack.data.frame | Create a data frame stack |
| DataFrameStack.list | Create a data frame stack |
| dimnames-method | Return the dimnames of a DataFrameStack |
| dimnames.DataFrameStack | Return the dimnames of a DataFrameStack |
| DirectSamplingParameters | Create a parameter set specifying a direct sampling algorithm |
| DSpars | Create a parameter set specifying a direct sampling algorithm |
| EmpiricalStructuralFunctionSpecification-class | Empirical structural function specification |
| fit_lmc | Fit an LMC to an empirical variogram |
| fit_lmc.default | Fit an LMC to an empirical variogram |
| fit_lmc.gstatVariogram | Fit an LMC to an empirical variogram |
| fit_lmc.logratioVariogram | Fit an LMC to an empirical variogram |
| fit_lmc.logratioVariogramAnisotropy | Fit an LMC to an empirical variogram |
| genDiag | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| getGridOrder | Set or get the ordering of a grid |
| getMask | Get the mask info out of a spatial data object |
| getMask.default | Get the mask info out of a spatial data object |
| getMask.SpatialPixels | Get the mask info out of a spatial data object |
| getMask.SpatialPixelsDataFrame | Get the mask info out of a spatial data object |
| getMask.SpatialPointsDataFrame | Get the mask info out of a spatial data object |
| getStackElement | Set or get the i-th data frame of a data.frame stack |
| getStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack |
| getStackElement.default | Set or get the i-th data frame of a data.frame stack |
| getStackElement.list | Set or get the i-th data frame of a data.frame stack |
| getTellus | Download the Tellus survey data set (NI) |
| gmApply | Apply Functions Over Array or DataFrameStack Margins |
| gmApply.DataFrameStack | Apply Functions Over Array or DataFrameStack Margins |
| gmApply.default | Apply Functions Over Array or DataFrameStack Margins |
| gmGaussianMethodParameters-class | parameters for Spatial Gaussian methods of any kind |
| gmGaussianSimulationAlgorithm-class | parameters for Gaussian Simulation methods |
| gmMPSParameters-class | parameters for Multiple-Point Statistics methods |
| gmNeighbourhoodSpecification-class | Neighbourhood description |
| gmSimulationAlgorithm-class | Parameter specification for a spatial simulation algorithm |
| gmSpatialDataContainer-class | General description of a spatial data container |
| gmSpatialMethodParameters-class | Parameter specification for any spatial method |
| gmSpatialModel-class | Conditional spatial model data container |
| gmTrainingImage-class | MPS training image class |
| gmUnconditionalSpatialModel-class | General description of a spatial model |
| gmValidationStrategy-class | Validation strategy description |
| gridOrder_array | Set or get the ordering of a grid |
| gridOrder_GSLib | Set or get the ordering of a grid |
| gridOrder_gstat | Set or get the ordering of a grid |
| gridOrder_sp | Set or get the ordering of a grid |
| GridOrNothing-class | Superclass for grid or nothing |
| gsi.calcCgram | Compute covariance matrix oout of locations |
| gsi.Cokriging | Cokriging of all sorts, internal function |
| gsi.CondTurningBands | Internal function, conditional turning bands realisations |
| gsi.DS | Workhorse function for direct sampling |
| gsi.EVario2D | Empirical variogram or covariance function in 2D |
| gsi.EVario3D | Empirical variogram or covariance function in 3D |
| gsi.getV | extract information about the original data, if available |
| gsi.gstatCokriging2compo | Reorganisation of cokriged compositions |
| gsi.gstatCokriging2compo.data.frame | Reorganisation of cokriged compositions |
| gsi.gstatCokriging2compo.default | Reorganisation of cokriged compositions |
| gsi.gstatCokriging2rmult | Reorganisation of cokriged compositions |
| gsi.gstatCokriging2rmult.data.frame | Reorganisation of cokriged compositions |
| gsi.gstatCokriging2rmult.default | Reorganisation of cokriged compositions |
| gsi.orig | extract information about the original data, if available |
| gsi.produceV | Create a matrix of logcontrasts and name prefix |
| gsi.TurningBands | Internal function, unconditional turning bands realisations |
| gsi.validModels | Generate D-variate variogram models |
| gstat2LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
| has.missings.data.frame | Check presence of missings check presence of missings in a data.frame |
| image.logratioVariogramAnisotropy | Plot variogram maps for anisotropic logratio variograms |
| image.mask | Image method for mask objects |
| image_cokriged | Plot an image of gridded data |
| image_cokriged.default | Plot an image of gridded data |
| image_cokriged.spatialGridAcomp | Plot an image of gridded data |
| image_cokriged.spatialGridRmult | Plot an image of gridded data |
| is.anisotropySpecification | Check for any anisotropy class |
| is.isotropic | Check for anisotropy of a theoretical variogram |
| KrigingNeighbourhood | Create a parameter set of local for neighbourhood specification. |
| LeaveOneOut | Specify the leave-one-out strategy for validation of a spatial model |
| length.gmCgram | Length, and number of columns or rows |
| LMCAnisCompo | Create a anisotropic model for regionalized compositions |
| logratioVariogram | Empirical logratio variogram calculation |
| logratioVariogram-method | Conditional spatial model data container |
| logratioVariogram-method | Logratio variogram of a compositional data |
| logratioVariogram_gmSpatialModel | Variogram method for gmSpatialModel objects |
| Maf | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.aplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.ccomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.data.frame | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.rmult | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| Maf.rplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| make.gmCompositionalGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized compositions |
| make.gmCompositionalMPSSpatialModel | Construct a Multi-Point gmSpatialModel for regionalized compositions |
| make.gmMultivariateGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized multivariate data |
| mean.accuracy | Mean accuracy |
| mean.spatialDecorrelationMeasure | Average measures of spatial decorrelation |
| ModelStructuralFunctionSpecification-class | Structural function model specification |
| ncol.gmCgram | Length, and number of columns or rows |
| ndirections | Number of directions of an empirical variogram |
| ndirections.azimuth | Number of directions of an empirical variogram |
| ndirections.azimuthInterval | Number of directions of an empirical variogram |
| ndirections.default | Number of directions of an empirical variogram |
| ndirections.gmEVario | Number of directions of an empirical variogram |
| ndirections.gstatVariogram | Number of directions of an empirical variogram |
| ndirections.logratioVariogram | Number of directions of an empirical variogram |
| ndirections.logratioVariogramAnisotropy | Number of directions of an empirical variogram |
| NfoldCrossValidation | Specify a strategy for validation of a spatial model |
| NGSAustralia | National Geochemical Survey of Australia: soil data |
| noSpatCorr.test | Test for lack of spatial correlation |
| noSpatCorr.test.data.frame | Test for lack of spatial correlation |
| noSpatCorr.test.default | Test for lack of spatial correlation |
| noSpatCorr.test.matrix | Test for lack of spatial correlation |
| noStackDim | Get/set name/index of (non)stacking dimensions |
| noStackDim.default | Get/set name/index of (non)stacking dimensions |
| nrow.gmCgram | Length, and number of columns or rows |
| pairsmap | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
| pairsmap.default | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
| pairsmap.SpatialPointsDataFrame | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
| plot.accuracy | Plot method for accuracy curves |
| plot.gmCgram | Draw cuves for covariance/variogram models |
| plot.gmEVario | Plot empirical variograms |
| plot.logratioVariogramAnisotropy | Plot variogram lines of empirical directional logratio variograms |
| plot.swarmPlot | Plotting method for swarmPlot objects |
| precision | Precision calculations |
| precision.accuracy | Precision calculations |
| Predict | Predict method for objects of class 'gmSpatialModel' |
| predict | Predict method for objects of class 'gmSpatialModel' |
| Predict-method | Predict method for objects of class 'gmSpatialModel' |
| predict-method | Predict method for objects of class 'gmSpatialModel' |
| predict.genDiag | Predict method for generalised diagonalisation objects |
| predict.gmCgram | Convert a gmCgram object to an (evaluable) function |
| predict.gmSpatialModel | Predict method for objects of class 'gmSpatialModel' |
| predict.LMCAnisCompo | Compute model variogram values Evaluate the variogram model provided at some lag vectors |
| predict_gmSpatialModel | Predict method for objects of class 'gmSpatialModel' |
| print.mask | Print method for mask objects |
| pwlrmap | Compositional maps, pairwise logratios Matrix of maps showing different combinations of components of a composition, in pairwise logratios |
| RJD | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| RJD.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| RJD.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| RJD.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| SequentialSimulation | Create a parameter set specifying a gaussian sequential simulation algorithm |
| setCgram | Generate D-variate variogram models |
| setGridOrder | Set or get the ordering of a grid |
| setGridOrder_array | Set or get the ordering of a grid |
| setGridOrder_sp | Set or get the ordering of a grid |
| setMask | Set a mask on an object |
| setMask.data.frame | Set a mask on an object |
| setMask.DataFrameStack | Set a mask on an object |
| setMask.default | Set a mask on an object |
| setMask.GridTopology | Set a mask on an object |
| setMask.SpatialGrid | Set a mask on an object |
| setMask.SpatialPoints | Set a mask on an object |
| setStackElement | Set or get the i-th data frame of a data.frame stack |
| setStackElement.data.frame | Set or get the i-th data frame of a data.frame stack |
| setStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack |
| setStackElement.default | Set or get the i-th data frame of a data.frame stack |
| setStackElement.list | Set or get the i-th data frame of a data.frame stack |
| sortDataInGrid | Reorder data in a grid |
| spatialDecorrelation | Compute diagonalisation measures |
| spatialDecorrelation.gmEVario | Compute diagonalisation measures |
| spatialDecorrelation.gstatVariogram | Compute diagonalisation measures |
| spatialDecorrelation.logratioVariogram | Compute diagonalisation measures |
| spatialGridAcomp | Construct a regionalized composition / reorder compositional simulations |
| spatialGridRmult | Construct a regionalized multivariate data |
| spectralcolors | Spectral colors palette based on the RColorBrewer::brewer.pal(11,"Spectral") |
| sphTrans | Spherifying transform Compute a transformation that spherifies a certain data set |
| sphTrans.default | Spherifying transform Compute a transformation that spherifies a certain data set |
| stackDim | Get/set name/index of (non)stacking dimensions |
| stackDim-method | Get name/index of the stacking dimension of a Spatial object |
| stackDim.DataFrameStack | Get/set name/index of (non)stacking dimensions |
| stackDim<- | Get/set name/index of (non)stacking dimensions |
| stackDim<-.default | Get/set name/index of (non)stacking dimensions |
| swarmPlot | Plot a swarm of calculated output through a DataFrameStack |
| swath | Swath plots |
| swath.acomp | Swath plots |
| swath.ccomp | Swath plots |
| swath.default | Swath plots |
| swath.rcomp | Swath plots |
| TurningBands | Create a parameter set specifying a turning bands simulation algorithm |
| unmask | Unmask a masked object |
| unmask.data.frame | Unmask a masked object |
| unmask.DataFrameStack | Unmask a masked object |
| unmask.SpatialPixels | Unmask a masked object |
| unmask.SpatialPoints | Unmask a masked object |
| UWEDGE | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| UWEDGE.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| UWEDGE.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| UWEDGE.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
| validate | Validate a spatial model |
| validate.LeaveOneOut | Validate a spatial model |
| validate.NfoldCrossValidation | Validate a spatial model |
| variogram-method | Conditional spatial model data container |
| variogramModelPlot | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
| variogramModelPlot.gmEVario | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
| variogramModelPlot.gstatVariogram | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
| variogramModelPlot.logratioVariogram | Quick plotting of empirical and theoretical logratio variograms Quick and dirty plotting of empirical logratio variograms with or without their models |
| variogram_gmSpatialModel | Variogram method for gmSpatialModel objects |
| vg.Exp | Generate D-variate variogram models |
| vg.exp | Generate D-variate variogram models |
| vg.Exponential | Generate D-variate variogram models |
| vg.Gau | Generate D-variate variogram models |
| vg.Gauss | Generate D-variate variogram models |
| vg.gauss | Generate D-variate variogram models |
| vg.Sph | Generate D-variate variogram models |
| vg.sph | Generate D-variate variogram models |
| vg.Spherical | Generate D-variate variogram models |
| Windarling | Ore composition of a bench at a mine in Windarling, West Australia. |
| write.GSLib | Write a regionalized data set in GSLIB format |
| xvErrorMeasures | Cross-validation errror measures |
| xvErrorMeasures.data.frame | Cross-validation errror measures |
| xvErrorMeasures.DataFrameStack | Cross-validation errror measures |
| xvErrorMeasures.default | Cross-validation errror measures |
| +.gmCgram | Combination of gmCgram variogram structures |
| [.DataFrameStack | Extract rows of a DataFrameStack |
| [.gmCgram | Subsetting of gmCgram variogram structures |
| [.logratioVariogramAnisotropy | Subsetting of logratioVariogram objects |
| [[.gmCgram | Subsetting of gmCgram variogram structures |
| `[.logratioVariogram` | Subsetting of logratioVariogram objects |