| CausalQueries-package | 'CausalQueries' |
| collapse_data | Make compact data with data strategies |
| complements | Make statement for complements |
| data_type_names | Data type names |
| decreasing | Make monotonicity statement (negative) |
| democracy_data | Development and Democratization: Data for replication of analysis in *Integrated Inferences* |
| draw_causal_type | Draw a single causal type given a parameter vector |
| expand_data | Expand compact data object to data frame |
| expand_wildcard | Expand wildcard |
| find_rounding_threshold | helper to find rounding thresholds for print methods |
| get_all_data_types | Get all data types |
| get_ambiguities_matrix | Get ambiguities matrix |
| get_event_probabilities | Draw event probabilities |
| get_parameters | Setting parameters |
| get_parameter_names | Get parameter names |
| get_parents | Get list of parents of all nodes in a model |
| get_parmap | Get parmap: a matrix mapping from parameters to data types |
| get_priors | Setting priors |
| get_query_types | Look up query types |
| get_type_prob | Get type probabilities |
| get_type_prob_c | generates one draw from type probability distribution for each type in P |
| get_type_prob_multiple_c | generates n draws from type probability distribution for each type in P |
| grab | Grab |
| increasing | Make monotonicity statement (positive) |
| institutions_data | Institutions and growth: Data for replication of analysis in *Integrated Inferences* |
| interacts | Make statement for any interaction |
| interpret_type | Interpret or find position in nodal type |
| lipids_data | Lipids: Data for Chickering and Pearl replication |
| make_data | Make data |
| make_events | Make data in compact form |
| make_model | Make a model |
| make_parameters | Setting parameters |
| make_parameter_matrix | Make parameter matrix |
| make_parmap | Make parmap: a matrix mapping from parameters to data types |
| make_priors | Setting priors |
| make_prior_distribution | Make a prior distribution from priors |
| non_decreasing | Make monotonicity statement (non negative) |
| non_increasing | Make monotonicity statement (non positive) |
| observe_data | Observe data, given a strategy |
| parameter_setting | Setting parameters |
| print.causal_model | Print a short summary for a causal model |
| print.causal_types | Print a short summary for causal_model causal-types |
| print.dag | Print a short summary for a causal_model DAG |
| print.event_probabilities | Print a short summary for event probabilities |
| print.model_query | Print a tightened summary of model queries |
| print.nodal_types | Print a short summary for causal_model nodal-types |
| print.nodes | Print a short summary for a causal_model nodes |
| print.parameters | Print a short summary for causal_model parameters |
| print.parameters_df | Print a short summary for a causal_model parameters data-frame |
| print.parameters_posterior | Print a short summary for causal_model parameter posterior distributions |
| print.parameters_prior | Print a short summary for causal_model parameter prior distributions |
| print.parents_df | Print a short summary for a causal_model parents data-frame |
| print.posterior_event_probabilities | Print a short summary of posterior_event_probabilities |
| print.stan_summary | Print a short summary for stan fit |
| print.statement | Print a short summary for a causal_model statement |
| print.summary.causal_model | Summarizing causal models |
| print.type_posterior | Print a short summary for causal-type posterior distributions |
| print.type_prior | Print a short summary for causal-type prior distributions |
| prior_setting | Setting priors |
| query_distribution | Calculate query distribution |
| query_model | Generate estimands dataframe |
| realise_outcomes | Realise outcomes |
| set_ambiguities_matrix | Set ambiguity matrix |
| set_confound | Set confound |
| set_parameters | Setting parameters |
| set_parameter_matrix | Set parameter matrix |
| set_parmap | Set parmap: a matrix mapping from parameters to data types |
| set_priors | Setting priors |
| set_prior_distribution | Add prior distribution draws |
| set_restrictions | Restrict a model |
| simulate_data | simulate_data is an alias for make_data |
| substitutes | Make statement for substitutes |
| summarise_distribution | helper to compute mean and sd of a distribution data.frame |
| summary.causal_model | Summarizing causal models |
| te | Make treatment effect statement (positive) |
| update_model | Fit causal model using 'stan' |