reclin2 has the functionality to use a cluster created by parallel or snow for record linkage. There are a couple of advantages to this. First, record linkage can be a computationally intensive problem as all records from both datasets have to be compared to each other. Splitting the computation over multiple cores or CPU’s can give a substantial speed benefit. The problem easily to parallelize. Second, when using a snow cluster, the computation can be distributed over multiple machines allowing reclin2 to use the memory of these multiple machined. Besides computationally intensive, record linkage can also be memory intensive as all pairs are stored in memory.
Parallelization over k cluster nodes is realised by randomly splitting the first dataset x into k equally sized parts and distribution over the nodes. The second dataset y is copied to each of the nodes. Therefore, it is beneficial for memory consumption if the first dataset is the largest of the two. On each node the local y is compared to the local x and a local set of pairs is generated. For most operations there exist methods for cluster_pairs. These usually consist of running the operations for the regular pairs on each of the nodes.
Below an example is given using a small cluster. It is assumed that the reader has read the introduction vignette and knows the general procedure of record linkage.
In this example the example in the introduction vignette is repeated using a cluster.
> library(reclin2)We will work with a pair of data sets with artificial data. They are tiny, but that allows us to see what happens. In this example we will perform ‘classic’ probabilistic record linkage.
> data("linkexample1", "linkexample2")
> print(linkexample1)
id lastname firstname address sex postcode
1 1 Smith Anna 12 Mainstr F 1234 AB
2 2 Smith George 12 Mainstr M 1234 AB
3 3 Johnson Anna 61 Mainstr F 1234 AB
4 4 Johnson Charles 61 Mainstr M 1234 AB
5 5 Johnson Charly 61 Mainstr M 1234 AB
6 6 Schwartz Ben 1 Eaststr M 6789 XY
> print(linkexample2)
id lastname firstname address sex postcode
1 2 Smith Gearge 12 Mainstreet <NA> 1234 AB
2 3 Jonson A. 61 Mainstreet F 1234 AB
3 4 Johnson Charles 61 Mainstr F 1234 AB
4 6 Schwartz Ben 1 Main M 6789 XY
5 7 Schwartz Anna 1 Eaststr F 6789 XYWe first have to start a cluster. Pairs can then be generated using any of the cluster_pair_* functions.
> library(parallel)
> cl <- makeCluster(2)
> pairs <- cluster_pair_blocking(cl, linkexample1, linkexample2,
+ "postcode")
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y
1: 1 1
2: 5 1
3: 3 3
4: 5 3
5: 1 3
6: 2 2
7: 2 3
8: 4 3
9: 6 5
10: 6 4The print function collects a few (max 6) pairs from each of the nodes and shows those. Other cluster_pair_* functions are cluster_pair and cluster_pair_minsim.
The cluster_pair_* functions return an object of type cluster_pairs. Most other methods work the same as for regular pairs. For example, to compare the pairs on variables:
> compare_pairs(pairs, on = c("lastname", "firstname",
+ "address", "sex"), default_comparator = jaro_winkler(0.9),
+ inplace = TRUE)
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex
1: 1 3 0.447619 0.4642857 0.9333333 1
2: 3 2 0.952381 0.5833333 0.9230769 1
3: 3 3 1.000000 0.4642857 1.0000000 1
4: 5 2 0.952381 0.0000000 0.9230769 0
5: 5 1 0.447619 0.5555556 0.8641026 NA
6: 2 1 1.000000 0.8888889 0.9230769 NA
7: 4 3 1.000000 1.0000000 1.0000000 0
8: 6 5 1.000000 0.5277778 1.0000000 0
9: 4 2 0.952381 0.0000000 0.9230769 0
10: 4 1 0.447619 0.6428571 0.8641026 NAThe code above was copy-pasted from the introduction. Here the argument inplace = TRUE was used, which adds the new variables to the existing pairs. One difference between regular pairs and cluster_pairs is that most methods will modify the existing pairs in place. Therefore, inplace is ignored here and we should use:
> compare_pairs(pairs, on = c("lastname", "firstname",
+ "address", "sex"), default_comparator = jaro_winkler(0.9))
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex
1: 1 1 1.000000 0.4722222 0.9230769 NA
2: 3 2 0.952381 0.5833333 0.9230769 1
3: 3 1 0.447619 0.4722222 0.8641026 NA
4: 3 3 1.000000 0.4642857 1.0000000 1
5: 5 3 1.000000 0.8492063 1.0000000 0
6: 2 2 0.000000 0.0000000 0.8641026 0
7: 4 2 0.952381 0.0000000 0.9230769 0
8: 4 3 1.000000 1.0000000 1.0000000 0
9: 2 3 0.447619 0.5396825 0.9333333 0
10: 6 5 1.000000 0.5277778 1.0000000 0Most methods for cluster_pairs do have a new_name argument that will generate a new set of pairs on the cluster nodes. For example, the following code will generate a new set of pairs and will not modify the existing pairs:
> pairs2 <- compare_pairs(pairs, on = c("lastname",
+ "firstname", "address", "sex"), new_name = "pairs2")
> print(pairs2)
Cluster 'pairs2' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex
1: 5 1 FALSE FALSE FALSE NA
2: 3 3 TRUE FALSE TRUE TRUE
3: 3 2 FALSE FALSE FALSE TRUE
4: 1 2 FALSE FALSE FALSE TRUE
5: 1 3 FALSE FALSE FALSE TRUE
6: 2 1 TRUE FALSE FALSE NA
7: 4 1 FALSE FALSE FALSE NA
8: 4 3 TRUE TRUE TRUE FALSE
9: 6 4 TRUE TRUE FALSE TRUE
10: 2 2 FALSE FALSE FALSE FALSE
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex
1: 5 3 1.000000 0.8492063 1.0000000 0
2: 3 1 0.447619 0.4722222 0.8641026 NA
3: 5 1 0.447619 0.5555556 0.8641026 NA
4: 3 3 1.000000 0.4642857 1.0000000 1
5: 1 3 0.447619 0.4642857 0.9333333 1
6: 4 2 0.952381 0.0000000 0.9230769 0
7: 2 3 0.447619 0.5396825 0.9333333 0
8: 6 4 1.000000 1.0000000 0.6111111 1
9: 4 1 0.447619 0.6428571 0.8641026 NA
10: 6 5 1.000000 0.5277778 1.0000000 0The function compare_vars offers more flexibility than compare_pairs. It can for example compare multiple variables at the same time (e.g. compare birth day and month allowing for swaps) or generate multiple results from comparing on one variable. This method also works on cluster_pairs.
The next step in the process, is to determine which pairs of records belong to the same entity and which do not. As in the introduction vignette we will use the classic method. Again, we hardly need to change the code from the introduction:
> m <- problink_em(~lastname + firstname + address +
+ sex, data = pairs)
> print(m)
M- and u-probabilities estimated by the EM-algorithm:
Variable M-probability U-probability
lastname 0.9990000 0.001152679
firstname 0.1999999 0.000100000
address 0.8999206 0.285831118
sex 0.3002011 0.285427112
Matching probability: 0.5885595.
> pairs <- predict(m, pairs = pairs, add = TRUE)
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex weights
1: 1 3 0.447619 0.4642857 0.9333333 1 0.8042090
2: 5 1 0.447619 0.5555556 0.8641026 NA 0.6717426
3: 3 3 1.000000 0.4642857 1.0000000 1 7.9350221
4: 3 1 0.447619 0.4722222 0.8641026 NA 0.6017106
5: 1 2 0.000000 0.5833333 0.8641026 1 -5.9463949
6: 2 2 0.000000 0.0000000 0.8641026 0 -6.3177171
7: 4 2 0.952381 0.0000000 0.9230769 0 3.6961688
8: 6 4 1.000000 1.0000000 0.6111111 1 14.6796595
9: 2 3 0.447619 0.5396825 0.9333333 0 0.7937508
10: 4 3 1.000000 1.0000000 1.0000000 0 15.4915816We can then select the pairs with a weight above a threshold.
> pairs <- select_threshold(pairs, "threshold", score = "weights",
+ threshold = 8)
> print(pairs)
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'
Showing a random selection of pairs:
.x .y lastname firstname address sex weights threshold
1: 3 2 0.952381 0.5833333 0.9230769 1 4.0674910 FALSE
2: 1 3 0.447619 0.4642857 0.9333333 1 0.8042090 FALSE
3: 1 1 1.000000 0.4722222 0.9230769 NA 7.7103862 FALSE
4: 5 2 0.952381 0.0000000 0.9230769 0 3.6961688 FALSE
5: 5 3 1.000000 0.8492063 1.0000000 0 8.5458257 TRUE
6: 2 1 1.000000 0.8888889 0.9230769 NA 8.6064218 TRUE
7: 2 2 0.000000 0.0000000 0.8641026 0 -6.3177171 FALSE
8: 4 1 0.447619 0.6428571 0.8641026 NA 0.7713174 FALSE
9: 2 3 0.447619 0.5396825 0.9333333 0 0.7937508 FALSE
10: 6 4 1.000000 1.0000000 0.6111111 1 14.6796595 TRUEAnd this is roughly where we have to stop working with cluster_pairs. The subset of selected pairs remaining should now be small enough that we can comfortably work locally. The most computationally intensive steps have been done. When we are not sure exactly what the threshold should be, we can also work with a more conservative threshold. That should still give us enough of a reduction in pairs that we can work locally. Using cluster_collect we can copy the selected pairs (or all pairs) locally:
> pairs <- select_threshold(pairs, "threshold", score = "weights",
+ threshold = 0)
> local_pairs <- cluster_collect(pairs, "threshold")
> print(local_pairs)
First data set: 6 records
Second data set: 5 records
Total number of pairs: 15 pairs
Blocking on: 'postcode'
.x .y lastname firstname address sex weights threshold
1: 1 1 1.000000 0.4722222 0.9230769 NA 7.7103862 TRUE
2: 1 3 0.447619 0.4642857 0.9333333 1 0.8042090 TRUE
3: 3 1 0.447619 0.4722222 0.8641026 NA 0.6017106 TRUE
4: 3 2 0.952381 0.5833333 0.9230769 1 4.0674910 TRUE
5: 3 3 1.000000 0.4642857 1.0000000 1 7.9350221 TRUE
6: 5 1 0.447619 0.5555556 0.8641026 NA 0.6717426 TRUE
7: 5 2 0.952381 0.0000000 0.9230769 0 3.6961688 TRUE
8: 5 3 1.000000 0.8492063 1.0000000 0 8.5458257 TRUE
9: 2 1 1.000000 0.8888889 0.9230769 NA 8.6064218 TRUE
10: 2 3 0.447619 0.5396825 0.9333333 0 0.7937508 TRUE
11: 4 1 0.447619 0.6428571 0.8641026 NA 0.7713174 TRUE
12: 4 2 0.952381 0.0000000 0.9230769 0 3.6961688 TRUE
13: 4 3 1.000000 1.0000000 1.0000000 0 15.4915816 TRUE
14: 6 4 1.000000 1.0000000 0.6111111 1 14.6796595 TRUE
15: 6 5 1.000000 0.5277778 1.0000000 0 7.9139248 TRUElocal_pairs is a regular pairs object (and therefore a data.table) which can be operated upon as any pairs object. cluster_collect also has the option clear which when TRUE will delete the pairs on the cluster nodes. After this we can use the code from the introduction vignette:
> local_pairs <- compare_vars(local_pairs, "truth",
+ on_x = "id", on_y = "id")
> local_pairs <- select_n_to_m(local_pairs, "weights",
+ variable = "ntom", threshold = 0)
> table(local_pairs$truth, local_pairs$ntom)
FALSE TRUE
FALSE 11 0
TRUE 0 4
> linked_data_set <- link(local_pairs, selection = "ntom")
> print(linked_data_set)
Total number of pairs: 4 pairs
.y .x id.x lastname.x firstname.x address.x sex.x postcode.x .id id.y
1: 1 2 2 Smith George 12 Mainstr M 1234 AB 2 2
2: 2 3 3 Johnson Anna 61 Mainstr F 1234 AB 3 3
3: 3 4 4 Johnson Charles 61 Mainstr M 1234 AB 4 4
4: 4 6 6 Schwartz Ben 1 Eaststr M 6789 XY 6 6
lastname.y firstname.y address.y sex.y postcode.y
1: Smith Gearge 12 Mainstreet <NA> 1234 AB
2: Jonson A. 61 Mainstreet F 1234 AB
3: Johnson Charles 61 Mainstr F 1234 AB
4: Schwartz Ben 1 Main M 6789 XYThe cluster_pair object is a list with two elements:
cluster with a copy of the parallel or snow cluster.name the name of the environment on the cluster nodes in which the pairs are stored.On the cluster nodes there exists an environment (reclin2::reclin_env). For each set of pairs an environment is created in that environment containing the pairs. To demonstrate, let us get the first pair on each of the nodes:
> clusterCall(pairs$cluster, function(name) {
+ pairs <- reclin2:::reclin_env[[name]]$pairs
+ head(pairs, 1)
+ }, name = pairs$name)
[[1]]
First data set: 3 records
Second data set: 5 records
Total number of pairs: 1 pairs
Blocking on: 'postcode'
.x .y lastname firstname address sex weights threshold
1: 1 1 1 0.4722222 0.9230769 NA 7.710386 TRUE
[[2]]
First data set: 3 records
Second data set: 5 records
Total number of pairs: 1 pairs
Blocking on: 'postcode'
.x .y lastname firstname address sex weights threshold
1: 1 1 1 0.8888889 0.9230769 NA 8.606422 TRUEcluster_pairsRegular pairs are also a data.table. Therefore, it is easy to manually create columns, select or aggregate. As for cluster_pairs the pairs are distributed over the cluster nodes, this is more difficult for cluster_pairs. In order to help with this, reclin2 has two helper functions: cluster_call and cluster_modify_pairs.
You can pass cluster_call the cluster_pairs object and a function. This function will be called on each cluster node and will be passed the pairs object, the local x and y (in that order). This can be used to modify the pairs, or calculate statistics from the pairs. The result of the function calls is returned by cluster_call. Therefore, if the sole goal is to modify the pairs, make sure to return NULL (or at least something small). Below we use cluster_call to make a random stratified sample of pairs:
> compare_vars(pairs, "id")
> cluster_call(pairs, function(pairs, ...) {
+ sel1 <- sample(which(pairs$id), 2)
+ sel2 <- sample(which(!pairs$id), 2)
+ pairs[, `:=`(sample, FALSE)]
+ pairs[c(sel1, sel2), `:=`(sample, TRUE)]
+ NULL
+ })
> sample <- cluster_collect(pairs, "sample")cluster_modify_pairs is very similar to cluster_call but is mainly meant for modifying the pairs object. Although in the previous example we also used cluster_call for that. When the function passed to cluster_modify_pairs returns a data.table, this data.table will overwrite the pairs object. cluster_modify_pairs also accepts a new_name argument. When set a new pairs object will be created.
Let’s use the sample from above to estimate a model and then use cluster_modify_pairs to add the predictions to the pairs:
> mglm <- glm(id ~ lastname + firstname, data = sample)
> cluster_modify_pairs(pairs, function(pairs, model,
+ ...) {
+ pairs$pmodel <- predict(model, newdata = pairs, type = "response")
+ pairs
+ }, model = mglm)And stop the cluster.
> stopCluster(cl)