| as_mild_df | Coerce to MILD data frame |
| as_mi_df | Coerce to MI data frame |
| bag_instance_sampling | Sample 'mild_df' object by bags and instances |
| build_fm | Build a feature map on new data |
| build_fm.kfm_exact | Build a feature map on new data |
| build_fm.kfm_nystrom | Build a feature map on new data |
| build_instance_feature | Flatten 'mild_df' data to the instance level |
| classify_bags | Classify y from bags |
| cv_misvm | Fit MI-SVM model to the data using cross-validation |
| cv_misvm.default | Fit MI-SVM model to the data using cross-validation |
| cv_misvm.formula | Fit MI-SVM model to the data using cross-validation |
| cv_misvm.mi_df | Fit MI-SVM model to the data using cross-validation |
| formatting | Printing multiple instance data frames |
| generate_mild_df | Generate mild_df using multivariate t and normal distributions. |
| kfm_exact | Create an exact kernel feature map |
| kfm_nystrom | Fit a Nyström kernel feature map approximation |
| kfm_nystrom.default | Fit a Nyström kernel feature map approximation |
| kfm_nystrom.mild_df | Fit a Nyström kernel feature map approximation |
| kme | Calculate the kernel mean embedding matrix |
| kme.default | Calculate the kernel mean embedding matrix |
| kme.mild_df | Calculate the kernel mean embedding matrix |
| mi | Create an 'mi' object |
| mild | Create a mild object |
| mild_df | Build a MILD data frame |
| mior | Fit MIOR model to the data |
| mior.default | Fit MIOR model to the data |
| mior.formula | Fit MIOR model to the data |
| mior.mi_df | Fit MIOR model to the data |
| mismm | Fit MILD-SVM model to the data |
| mismm.default | Fit MILD-SVM model to the data |
| mismm.formula | Fit MILD-SVM model to the data |
| mismm.mild_df | Fit MILD-SVM model to the data |
| misvm | Fit MI-SVM model to the data |
| misvm.default | Fit MI-SVM model to the data |
| misvm.formula | Fit MI-SVM model to the data |
| misvm.mild_df | Fit MI-SVM model to the data |
| misvm.mi_df | Fit MI-SVM model to the data |
| misvm_orova | Fit MI-SVM model to ordinal outcome data using One-vs-All |
| misvm_orova.default | Fit MI-SVM model to ordinal outcome data using One-vs-All |
| misvm_orova.formula | Fit MI-SVM model to ordinal outcome data using One-vs-All |
| misvm_orova.mi_df | Fit MI-SVM model to ordinal outcome data using One-vs-All |
| mi_df | Build a multiple instance (MI) data frame |
| omisvm | Fit MI-SVM-OR model to ordinal outcome data |
| omisvm.default | Fit MI-SVM-OR model to ordinal outcome data |
| omisvm.formula | Fit MI-SVM-OR model to ordinal outcome data |
| omisvm.mi_df | Fit MI-SVM-OR model to ordinal outcome data |
| ordmvnorm | Sample ordinal MIL data using mvnorm |
| predict.cv_misvm | Predict method for 'cv_misvm' object |
| predict.mior | Predict method for 'mior' object |
| predict.mismm | Predict method for 'mismm' object |
| predict.misvm | Predict method for 'misvm' object |
| predict.misvm_orova | Predict method for 'misvm_orova' object |
| predict.omisvm | Predict method for 'omisvm' object |
| predict.smm | Predict method for 'smm' object |
| predict.svor_exc | Predict method for 'svor_exc' object |
| print.mild_df | Printing multiple instance data frames |
| print.mi_df | Printing multiple instance data frames |
| smm | Fit SMM model to the data |
| smm.default | Fit SMM model to the data |
| smm.formula | Fit SMM model to the data |
| smm.mild_df | Fit SMM model to the data |
| summarize_samples | Summarize data across functions |
| summarize_samples.default | Summarize data across functions |
| summarize_samples.mild_df | Summarize data across functions |
| svor_exc | Fit SVOR-EXC model to ordinal outcome data |
| svor_exc.default | Fit SVOR-EXC model to ordinal outcome data |
| svor_exc.formula | Fit SVOR-EXC model to ordinal outcome data |
| svor_exc.mi_df | Fit SVOR-EXC model to ordinal outcome data |