A B C D E F G H I K L M N O P R S T U V W
| activation | Activation functions between network layers |
| adjust_deg_free | Parameters to adjust effective degrees of freedom |
| all_neighbors | Parameter to determine which neighbors to use |
| bart-param | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. |
| batch_size | Neural network parameters |
| class_weights | Parameters for class weights for imbalanced problems |
| conditional_min_criterion | Parameters for possible engine parameters for partykit models |
| conditional_test_statistic | Parameters for possible engine parameters for partykit models |
| conditional_test_type | Parameters for possible engine parameters for partykit models |
| confidence_factor | Parameters for possible engine parameters for C5.0 |
| cost | Support vector machine parameters |
| cost_complexity | Parameter functions related to tree- and rule-based models. |
| degree | Parameters for exponents |
| degree_int | Parameters for exponents |
| deg_free | Degrees of freedom (integer) |
| diagonal_covariance | Parameters for possible engine parameters for sda models |
| dist_power | Minkowski distance parameter |
| dropout | Neural network parameters |
| epochs | Neural network parameters |
| extrapolation | Parameters for possible engine parameters for Cubist |
| finalize | Functions to finalize data-specific parameter ranges |
| finalize.default | Functions to finalize data-specific parameter ranges |
| finalize.list | Functions to finalize data-specific parameter ranges |
| finalize.logical | Functions to finalize data-specific parameter ranges |
| finalize.param | Functions to finalize data-specific parameter ranges |
| finalize.parameters | Functions to finalize data-specific parameter ranges |
| freq_cut | Near-zero variance parameters |
| fuzzy_thresholding | Parameters for possible engine parameters for C5.0 |
| get_batch_sizes | Functions to finalize data-specific parameter ranges |
| get_log_p | Functions to finalize data-specific parameter ranges |
| get_n | Functions to finalize data-specific parameter ranges |
| get_n_frac | Functions to finalize data-specific parameter ranges |
| get_n_frac_range | Functions to finalize data-specific parameter ranges |
| get_p | Functions to finalize data-specific parameter ranges |
| get_rbf_range | Functions to finalize data-specific parameter ranges |
| grid_latin_hypercube | Space-filling parameter grids |
| grid_latin_hypercube.list | Space-filling parameter grids |
| grid_latin_hypercube.param | Space-filling parameter grids |
| grid_latin_hypercube.parameters | Space-filling parameter grids |
| grid_latin_hypercube.workflow | Space-filling parameter grids |
| grid_max_entropy | Space-filling parameter grids |
| grid_max_entropy.list | Space-filling parameter grids |
| grid_max_entropy.param | Space-filling parameter grids |
| grid_max_entropy.parameters | Space-filling parameter grids |
| grid_max_entropy.workflow | Space-filling parameter grids |
| grid_random | Create grids of tuning parameters |
| grid_random.list | Create grids of tuning parameters |
| grid_random.param | Create grids of tuning parameters |
| grid_random.parameters | Create grids of tuning parameters |
| grid_random.workflow | Create grids of tuning parameters |
| grid_regular | Create grids of tuning parameters |
| grid_regular.list | Create grids of tuning parameters |
| grid_regular.param | Create grids of tuning parameters |
| grid_regular.parameters | Create grids of tuning parameters |
| grid_regular.workflow | Create grids of tuning parameters |
| harmonic_frequency | Harmonic Frequency |
| has_unknowns | Placeholder for unknown parameter values |
| hidden_units | Neural network parameters |
| is_unknown | Placeholder for unknown parameter values |
| kernel_offset | Kernel parameters |
| Laplace | Laplace correction parameter |
| learn_rate | Learning rate |
| loss_reduction | Parameter functions related to tree- and rule-based models. |
| lower_quantile | Parameters for possible engine parameters for ranger |
| max_nodes | Parameters for possible engine parameters for randomForest |
| max_num_terms | Parameters for possible engine parameters for earth models |
| max_rules | Parameters for possible engine parameters for Cubist |
| max_times | Word frequencies for removal |
| max_tokens | Maximum number of retained tokens |
| min_dist | Parameter for the effective minimum distance between embedded points |
| min_n | Parameter functions related to tree- and rule-based models. |
| min_times | Word frequencies for removal |
| min_unique | Number of unique values for pre-processing |
| mixture | Mixture of penalization terms |
| momentum | Gradient descent momentum parameter |
| mtry | Number of randomly sampled predictors |
| mtry_long | Number of randomly sampled predictors |
| mtry_prop | Proportion of Randomly Selected Predictors |
| neighbors | Number of neighbors |
| new-param | Tools for creating new parameter objects |
| new_qual_param | Tools for creating new parameter objects |
| new_quant_param | Tools for creating new parameter objects |
| no_global_pruning | Parameters for possible engine parameters for C5.0 |
| num_breaks | Number of cut-points for binning |
| num_clusters | Number of Clusters |
| num_comp | Number of new features |
| num_hash | Text hashing parameters |
| num_knots | Number of knots (integer) |
| num_leaves | Possible engine parameters for lightbgm |
| num_random_splits | Parameters for possible engine parameters for ranger |
| num_runs | Number of Computation Runs |
| num_terms | Number of new features |
| num_tokens | Parameter to determine number of tokens in ngram |
| over_ratio | Parameters for class-imbalance sampling |
| parameters | Information on tuning parameters within an object |
| parameters.default | Information on tuning parameters within an object |
| parameters.list | Information on tuning parameters within an object |
| parameters.param | Information on tuning parameters within an object |
| penalty | Amount of regularization/penalization |
| penalty_L1 | Parameters for possible engine parameters for xgboost |
| penalty_L2 | Parameters for possible engine parameters for xgboost |
| predictor_prop | Proportion of predictors |
| predictor_winnowing | Parameters for possible engine parameters for C5.0 |
| prior_mixture_threshold | Bayesian PCA parameters |
| prior_outcome_range | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. |
| prior_slab_dispersion | Bayesian PCA parameters |
| prior_terminal_node_coef | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. |
| prior_terminal_node_expo | Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models. |
| prod_degree | Parameters for exponents |
| prune | Parameter functions related to tree- and rule-based models. |
| prune_method | MARS pruning methods |
| ranger_class_rules | Parameters for possible engine parameters for ranger |
| ranger_reg_rules | Parameters for possible engine parameters for ranger |
| ranger_split_rules | Parameters for possible engine parameters for ranger |
| range_get | Tools for working with parameter ranges |
| range_set | Tools for working with parameter ranges |
| range_validate | Tools for working with parameter ranges |
| rate_decay | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_initial | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_largest | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_reduction | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_schedule | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_steps | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rate_step_size | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| rbf_sigma | Kernel parameters |
| regularization_factor | Parameters for possible engine parameters for ranger |
| regularization_method | Estimation methods for regularized models |
| regularize_depth | Parameters for possible engine parameters for ranger |
| rule_bands | Parameters for possible engine parameters for C5.0 |
| sample_prop | Parameter functions related to tree- and rule-based models. |
| sample_size | Parameter functions related to tree- and rule-based models. |
| scale_factor | Kernel parameters |
| scale_pos_weight | Parameters for possible engine parameters for xgboost |
| scheduler-param | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| select_features | Parameter to enable feature selection |
| shrinkage_correlation | Parameters for possible engine parameters for sda models |
| shrinkage_frequencies | Parameters for possible engine parameters for sda models |
| shrinkage_variance | Parameters for possible engine parameters for sda models |
| signed_hash | Text hashing parameters |
| significance_threshold | Parameters for possible engine parameters for ranger |
| smoothness | Kernel Smoothness |
| spline_degree | Parameters for exponents |
| splitting_rule | Parameters for possible engine parameters for ranger |
| stop_iter | Early stopping parameter |
| summary_stat | Rolling summary statistic for moving windows |
| survival_link | Survival Model Link Function |
| surv_dist | Parametric distributions for censored data |
| svm_margin | Support vector machine parameters |
| threshold | General thresholding parameter |
| token | Token types |
| trees | Parameter functions related to tree- and rule-based models. |
| tree_depth | Parameter functions related to tree- and rule-based models. |
| trim_amount | Amount of Trimming |
| unbiased_rules | Parameters for possible engine parameters for Cubist |
| under_ratio | Parameters for class-imbalance sampling |
| unique_cut | Near-zero variance parameters |
| unknown | Placeholder for unknown parameter values |
| update.parameters | Update a single parameter in a parameter set |
| validation_set_prop | Proportion of data used for validation |
| values_activation | Activation functions between network layers |
| values_prune_method | MARS pruning methods |
| values_regularization_method | Estimation methods for regularized models |
| values_scheduler | Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models. |
| values_summary_stat | Rolling summary statistic for moving windows |
| values_survival_link | Survival Model Link Function |
| values_surv_dist | Parametric distributions for censored data |
| values_test_statistic | Parameters for possible engine parameters for partykit models |
| values_test_type | Parameters for possible engine parameters for partykit models |
| values_token | Token types |
| values_weight_func | Kernel functions for distance weighting |
| values_weight_scheme | Term frequency weighting methods |
| value_inverse | Tools for working with parameter values |
| value_sample | Tools for working with parameter values |
| value_seq | Tools for working with parameter values |
| value_set | Tools for working with parameter values |
| value_transform | Tools for working with parameter values |
| value_validate | Tools for working with parameter values |
| vocabulary_size | Number of tokens in vocabulary |
| weight | Parameter for '"double normalization"' when creating token counts |
| weight_func | Kernel functions for distance weighting |
| weight_scheme | Term frequency weighting methods |
| window_size | Parameter for the moving window size |