| PopED-package | PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
| a_line_search | Optimize using line search |
| build_sfg | Build PopED parameter function from a model function |
| calc_ofv_and_fim | Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for either point values or parameters or distributions. |
| cell | Create a cell array (a matrix of lists) |
| create.poped.database | Create a PopED database |
| create_design | Create design variables for a full description of a design. |
| create_design_space | Create design variables and a design space for a full description of an optimization problem. |
| design_summary | Display a summary of output from poped_db |
| efficiency | Compute efficiency. |
| evaluate.e.ofv.fim | Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM). |
| evaluate.fim | Evaluate the Fisher Information Matrix (FIM) |
| evaluate_design | Evaluate a design |
| evaluate_fim_map | Compute the Bayesian Fisher information matrix |
| evaluate_power | Power of a design to estimate a parameter. |
| feps.add | RUV model: Additive . |
| feps.add.prop | RUV model: Additive and Proportional. |
| feps.prop | RUV model: Proportional. |
| ff.PK.1.comp.oral.md.CL | Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL. |
| ff.PK.1.comp.oral.md.KE | Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE. |
| ff.PK.1.comp.oral.sd.CL | Structural model: one-compartment, oral absorption, single bolus dose, parameterized using CL. |
| ff.PK.1.comp.oral.sd.KE | Structural model: one-compartment, oral absorption, single bolus dose, parameterized using KE. |
| ff.PKPD.1.comp.oral.md.CL.imax | Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL driving an inhibitory IMAX model with a direct effect. |
| ff.PKPD.1.comp.sd.CL.emax | Structural model: one-compartment, single bolus IV dose, parameterized using CL driving an EMAX model with a direct effect. |
| get_rse | Compute the expected parameter relative standard errors |
| LEDoptim | Optimization function for D-family, E-family and Laplace approximated ED designs |
| mc_mean | Compute the monte-carlo mean of a function |
| median_hilow_poped | Wrap summary functions from Hmisc and ggplot to work with stat_summary in ggplot |
| model_prediction | Model predictions |
| ofv_criterion | Normalize an objective function by the size of the FIM matrix |
| ofv_fim | Evaluate a criterion of the Fisher Information Matrix (FIM) |
| ones | Create a matrix of ones |
| optimize_groupsize | Title Optimize the proportion of individuals in the design groups |
| optimize_n_eff | Translate efficiency to number of subjects |
| optimize_n_rse | Optimize the number of subjects based on desired uncertainty of a parameter. |
| optim_ARS | Optimize a function using adaptive random search. |
| optim_LS | Optimize a function using a line search algorithm. |
| pargen | Parameter simulation |
| plot_efficiency_of_windows | Plot the efficiency of windows |
| plot_model_prediction | Plot model predictions |
| PopED | PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
| poped | PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
| poped_gui | Run the graphical interface for PopED |
| poped_optim | Optimize a design defined in a PopED database |
| poped_optimize | Retired optimization module for PopED |
| RS_opt | Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs. |
| shrinkage | Predict shrinkage of empirical Bayes estimates (EBEs) in a population model |
| size | Function written to match MATLAB's size function |
| start_parallel | Start parallel computational processes |
| summary.poped_optim | Display a summary of output from poped_optim |
| tic | Timer function (as in MATLAB) |
| toc | Timer function (as in MATLAB) |
| zeros | Create a matrix of zeros. |