| FCPS-package | Fundamental Clustering Problems Suite |
| ADPclustering | (Adaptive) Density Peak Clustering algorithm using automatic parameter selection |
| AgglomerativeNestingClustering | AGNES clustering |
| APclustering | Affinity Propagation Clustering |
| Atom | Atom introduced in [Ultsch, 2004]. |
| AutomaticProjectionBasedClustering | Automatic Projection-Based Clustering |
| Chainlink | Chainlink introduced in [Ultsch et al., 1994; Ultsch, 1995]. |
| ClusterabilityMDplot | Clusterability MDplot |
| ClusterAccuracy | ClusterAccuracy |
| ClusterApply | Applies a function over grouped data |
| ClusterChallenge | Generates a Fundamental Clustering Challenge based on specific artificial datasets. |
| ClusterCount | ClusterCount |
| ClusterCreateClassification | Create Classification for Cluster.. functions |
| ClusterDaviesBouldinIndex | Davies Bouldin Index |
| ClusterDendrogram | Cluster Dendrogram |
| ClusterDistances | ClusterDistances |
| ClusterDunnIndex | Dunn Index |
| ClusterEqualWeighting | ClusterEqualWeighting |
| ClusteringAlgorithms | Fundamental Clustering Problems Suite |
| ClusterInterDistances | Computes Inter-Cluster Distances |
| ClusterIntraDistances | ClusterDistances |
| ClusterMCC | Matthews Correlation Coefficient (MCC) |
| ClusterNoEstimation | Estimates Number of Clusters using up to 26 Indicators |
| ClusterNormalize | Cluster Normalize |
| ClusterPlotMDS | Plot Clustering using Dimensionality Reduction by MDS |
| ClusterRedefine | Redfines Clustering |
| ClusterRename | Renames Clustering |
| ClusterRenameDescendingSize | Cluster Rename Descending Size |
| ClusterShannonInfo | Shannon Information |
| ClusterUpsamplingMinority | Cluster Up Sampling using SMOTE for minority cluster |
| DatabionicSwarmClustering | Databionic Swarm (DBS) Clustering and Visualization |
| DBSCAN | DBSCAN |
| DBscan | DBSCAN |
| DBSclusteringAndVisualization | Databionic Swarm (DBS) Clustering and Visualization |
| DensityPeakClustering | Density Peak Clustering algorithm using the Decision Graph |
| DivisiveAnalysisClustering | Large DivisiveAnalysisClustering Clustering |
| EngyTime | EngyTime introduced in [Baggenstoss, 2002]. |
| EntropyOfDataField | Entropy Of a Data Field [Wang et al., 2011]. |
| EstimateRadiusByDistance | Estimate Radius By Distance |
| FannyClustering | Fuzzy Analysis Clustering [Rousseeuw/Kaufman, 1990, p. 253-279] |
| GenieClustering | Genie Clustering by Gini Index |
| GolfBall | GolfBall introduced in [Ultsch, 2005] |
| HCLclustering | On-line Update (Hard Competitive learning) method |
| HDDClustering | HDD clustering is a model-based clustering method of [Bouveyron et al., 2007]. |
| Hepta | Hepta introduced in [Ultsch, 2003] |
| HierarchicalCluster | Internal function of Hierarchical Clusterering of Data |
| HierarchicalClusterData | Internal function of Hierarchical Clusterering of Data |
| HierarchicalClusterDists | Internal Function of Hierarchical Clustering with Distances |
| HierarchicalClustering | Hierarchical Clustering |
| HierarchicalDBSCAN | Hierarchical DBSCAN |
| Hierarchical_DBSCAN | Hierarchical DBSCAN |
| Hierarchical_DBscan | Hierarchical DBSCAN |
| InterClusterDistances | Computes Inter-Cluster Distances |
| IntraClusterDistances | ClusterDistances |
| kmeansClustering | K-Means Clustering |
| kmeansDist | k-means Clustering using a distance matrix |
| LargeApplicationClustering | Large Application Clustering |
| Leukemia | Leukemia distance matrix and classificiation used in [Thrun, 2018] |
| Lsun3D | Lsun3D inspired by FCPS introduced in [Thrun, 2018] |
| MarkovClustering | Markov Clustering |
| MinimalEnergyClustering | Minimal Energy Clustering |
| MinimaxLinkageClustering | Minimax Linkage Hierarchical Clustering |
| ModelBasedClustering | Model Based Clustering |
| ModelBasedVarSelClustering | Model Based Clustering with Variable Selection |
| MoGclustering | Mixture of Gaussians Clustering using EM |
| MSTclustering | MST-kNN clustering algorithm [Inostroza-Ponta, 2008]. |
| NetworkClustering | Network Clustering |
| NeuralGasClustering | Neural gas algorithm for clustering |
| OPTICSclustering | OPTICS Clustering |
| PAMClustering | Partitioning Around Medoids (PAM) |
| PAMclustering | Partitioning Around Medoids (PAM) |
| pdfClustering | Probability Density Distribution Clustering |
| PenalizedRegressionBasedClustering | Penalized Regression-Based Clustering of [Wu et al., 2016]. |
| ProjectionPursuitClustering | Cluster Identification using Projection Pursuit as described in [Hofmeyr/Pavlidis, 2019]. |
| QTClustering | Stochastic QT Clustering |
| QTclustering | Stochastic QT Clustering |
| RobustTrimmedClustering | Robust Trimmed Clustering |
| SharedNearestNeighborClustering | SNN clustering |
| SOMclustering | self-organizing maps based clustering implemented by [Wherens, Buydens, 2017]. |
| SOTAclustering | SOTA Clustering |
| sotaClustering | SOTA Clustering |
| SparseClustering | Sparse Clustering |
| SpectralClustering | Spectral Clustering |
| Spectrum | Fast Adaptive Spectral Clustering [John et al, 2020] |
| StatPDEdensity | Pareto Density Estimation |
| SubspaceClustering | Algorithms for Subspace clustering |
| TandemClustering | Tandem Clustering |
| Target | Target introduced in [Ultsch, 2005]. |
| Tetra | Tetra introduced in [Ultsch, 1993] |
| TwoDiamonds | TwoDiamonds introduced in [Ultsch, 2003a, 2003b] |
| WingNut | WingNut introduced in [Ultsch, 2005] |