| beta_params | Calculate alpha and beta parameters of beta distribution. |
| calculate_icers | Calculate incremental cost-effectiveness ratios (ICERs) |
| calc_evpi | Expected Value of Perfect Information (EVPI) |
| calc_evppi | Estimation of the Expected Value of Partial Perfect Information (EVPPI) using a linear regression metamodel approach |
| calc_evsi | Calculate Expected Value of Sample Information (EVSI) |
| calc_exp_loss | Calculate the expected loss at a range of willingness-to-pay thresholds |
| ceac | Cost-Effectiveness Acceptability Curve (CEAC) |
| create_dsa_oneway | Create one-way deterministic sensitivity analysis object |
| create_dsa_twoway | Create one-way deterministic sensitivity analysis object |
| dirichlet_params | Calculate alpha parameters of Dirichlet distribution. |
| example_psa | Sample PSA data for testing |
| example_psa_obj | Sample PSA data for testing |
| gamma_params | Calculate shape and scale (or rate) parameters of a gamma distribution. |
| gen_psa_samp | Generate PSA Sample |
| hund_strat | Sample deterministic data for testing |
| lnorm_params | Calculate location and scale parameters of a log-normal distribution. |
| make_psa_obj | Create a PSA object |
| metamodel | Linear regression metamodeling |
| owsa | One-way sensitivity analysis |
| owsa_opt_strat | plot the optimal strategy as the parameter values change |
| owsa_tornado | Tornado plot of a one-way sensitivity analysis |
| plot.evpi | Plot of Expected Value of Perfect Information (EVPI) |
| plot.evppi | Plot of Expected Value of Partial Perfect Information (EVPPI) |
| plot.evsi | Plot of Expected Value of Sample Information (EVSI) |
| plot.exp_loss | Plot of Expected Loss Curves (ELC) |
| plot.icers | Plot of ICERs |
| plot.owsa | Plot a sensitivity analysis |
| plot.psa | Plot the psa object |
| plot.twsa | Two-way sensitivity analysis plot |
| predict.metamodel | Predict from a one-way or two-way metamodel |
| print.metamodel | Print metamodel |
| print.sa | print a psa object |
| psa_cdiff | Sample PSA dataset |
| rdirichlet | Random number generation for the Dirichlet distribution with parameter vector alpha. |
| run_owsa_det | Run deterministic one-way sensitivity analysis (OWSA) |
| run_psa | Calculate outcomes for a PSA using a user-defined function. |
| run_twsa_det | Run deterministic two-way sensitivity analysis (TWSA) |
| summary.metamodel | Summary of metamodel |
| summary.psa | summarize a psa object across all simulations |
| twsa | Two-way sensitivity analysis using linear regression metamodeling |