
Derivatives of the Likelihood of a Single

Observation from a Generalised Linear Hidden

Markov Model

1 Structure of the Model

The likelihood of a hidden Markov model is calculated (by means of a recursive procedure)
from likelihoods of single observations which are of the form f(y,θ). These expressions
may be either probability density functions or a probality mass functions. The symbol y
represents an observation and θ represents a vector of parameters upon which the distribu-
tion in question depends. These parameters depend in turn on the underlying state of the
hidden Markov chain and in general upon other predictors (in addition to “state”). The
dependence of θ upon the predictors will involve further parameters. In order to effect the
recursive procedure referred to above, we need to calculate the first and second derivatives,
with respect to all of the parameters that are involved, of the single observation likelihoods
f(y,θ).

We are concerned with five distributions: Gaussian, Poisson, Binomial, Db (“discretised
beta”) and Multinom. In the Poisson and Binomial cases the models are generalised linear
models. In the Gaussian and Db cases the models are “something like, but not exactly” gen-
eralised linear models. In the case of the Multinom (or “discnp” — discrete non-parametric)
distribution the model in question bears some relationship to a generalised linear model but
is of a substantialy different form. We shall use the expression “extended generalised hid-
den Markov models”. to describe the collection of all models under consideration, including
those based on the Gaussian, Db and Multinom distributions.

In the case of the Gaussian distribution θ = (µ, σ)> where µ is the mean and σ is the
standard deviation of the distribution. In the cases of the Poisson and Binomial distributions
θ is actually a scalar (which we consequently write simply at θ). For the Poisson distribution
θ is equal to λ, the Poisson mean, and for the Binomial distribution θ is equal to p, the
binomial success probability. In the case of the Db distribution, θ is equal to (α, β)> the
vector of “shape” parameters of the distribution. In the case of the Multinom distribution,
the model (as indicated above) has a rather different structure.

Except in the Gaussian case we assume that θ is completely determined by a vector x
of predictor variables and a vector φ of predictor coefficients. We need to determine the
first and second derivatives, of the likelihood of a single observation, with respect to the
entries of φ, and in the case of the Gaussian distribution, with respect to the σi. We now
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provide the details of the calculation of these derivatives for each of the five distributions
in question.

2 The Gaussian Distribution

We denote the vector of standard deviations by σ = (σ1, . . . , σK)> (where K is the number
of states). In the current development we assume that σi depends only on the state i of the
underlying hidden Markov chain (and not on any other prectors included in x. It is thus
convenient to make explicit the dependence of the probability density functions upon the
underlying state. We write the probability density function corresponding to state i as

fi(y) =
1√

2πσi
exp

(
−(y − µ)2

2σ2i

)
.

We model µ as µ = x>φ. Note that consequently µ depends, in general, upon the state i
although this dependence x is not made explicit in the foregoing expression for fi(y). We
need to differentiate fi(y) with respect to φ and σ.

It is straightforward, using logarithmic differentiation, to determine that:

∂fi(y)

∂µ
= fi(y)

(
y − µ
σ2i

)
∂fi(y)

∂σj
=

{
fi(y)

(
(y−µ)2
σ2
i
− 1
)
/σi if j = i

0 if j 6= i

∂2fi(y)

∂µ2
= fi(y)

(
(y − µ)2

σ2i
− 1

)
/σ2i

∂2fi(y)

∂σi∂σj
=

 fi(y)

((
(y−µ)2
σ2
i
− 1
)2

+ 1− 3(y−µ)2
σ2
i

)
/σ2i if j = i

0 if j 6= i

∂2fi(y)

∂µ∂σj
=

{
fi(y)

(
(y−µ)2
σ3 − 3

σ

)
(y − µ)/σ2 if j = i

0 if j 6= i
.

(1)

Recalling that µ = x>φ we see that
∂µ

∂φ
= x ,

An application of the chain rule then gives:

∂fi(y)

∂φ
=
∂fi(y)

∂µ
x
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The second derivatives of fi(y) with respect to φ are given by

∂2fi(y)

∂φ>∂φ
=

∂

∂φ>

(
∂fi(y)

∂µ
x

)
= x

(
∂2fi(y)

∂µ2
∂µ

∂φ>
+
∂2fi(y)

∂µ∂σi

∂σi

∂φ>

)
=

(
∂2fi(y)

∂µ2

)
xx>

since ∂σi/∂φ
> = 0.

The second derivatives of fi(y) with respect to φ and σ are given by

∂2fi(y)

∂φ>∂σj
=


(
∂2fi(y)
∂µ∂σj

)
x> if j = i

0> if j 6= i

∂2fi(y)

∂σj∂φ
=


(
∂2fi(y)
∂µ∂σj

)
x if j = i

0 if j 6= i
.

Note that
∂2fi(y)

∂σi∂σj

is provided in (1).

The structure of the first and second derivatives of fi(y) with respect to φ and σ can be
expressed concisely by letting

ψ =

[
σ
φ

]
and then writing

∂fi(y)

∂ψ
=

 ∂fi(y)
∂σ
∂fi(y)

∂φ


=

[
∂fi(y)
∂σi

δi
∂fi(y)
∂µ x

]
where δi is a vector of dimension K whose ith entry is 1 and whose other entries are all 0,
and

∂2fi(y)

∂ψ>∂ψ
=

 ∂2fi(y)
∂σ>∂σ

∂2fi(y)

∂σ>∂φ
∂2fi(y)

∂φ>∂σ
∂2fi(y)

∂φ>∂φ



=

 ∂2fi(y)
∂σ2

i
δiδ
>
i

∂2fi(y)
∂µ∂σi

δix
>

∂2fi(y)
∂µ∂σi

xδ>i
∂2fi(y)
∂µ2

xx>

 .
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Note that the firts and second partial derivatives of fi(y) with respect to µ and σi are
provided in (1).

3 The Poisson Distribution

The likelihood is the probability mass function

f(y) = e−λ
λy

y!

y = 0, 1, 2, . . .. Here θ is a scalar, θ = λ, and we model λ via λ = exp(x>φ), where x
is a vector of predictors and φ is a vector of predictor coefficients. The first and second
derivatives of f(y) with respect to λ are

∂f(y)

∂λ
= f(y)

(y
λ
− 1
)

∂2f(y)

∂λ2
= f(y)

((y
λ
− 1
)2
− y

λ2

)
Since λ = exp(x>φ) it follows readily that the first and second derivatives of λ with respect
to φ are lambdax and λxx>, respectively. Applying the chain rule we get

∂f(y)

∂φ
=
∂f(y)

∂λ
λx

∂2f(y)

∂φ>∂φ
=

(
∂f(y)

∂λ
λ+

∂2f(y)

∂λ2
λ2
)
xx>

4 The Binomial Distribution

The likelihood is the probability mass function

f(y) =

(
n

y

)
py(1− p)n−y

y = 0, 1, 2, . . . , n, where n is the number of independent binomial trials on which the success
count y is based, and p is the probability of success. Here θ is a scalar, θ = p, and we model
p via p = h(u) where u = x>φ, where x is a vector of predictors, φ is a vector of predictor
coefficients and h(u) is the logit function h(u) = (1 + e−u)−1.

In what follows we will need the first and second derivatives of the logit function. These
are given by

h′(u) =
e−u

(1 + e−u)2
and

h′′(u) =
e−u(e−u − 1)

(1 + e−u)3
.

(2)
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The first and second derivatives of f(y) with respect to p are

∂f(y)

∂p
= f(y)

(
y

p
− n− y

1− p

)
∂2f(y)

∂p2
= f(y)

((
y

p
− n− y

1− p

)2

− y

p2
− n− y

(1− p)2

)
.

Since p = h(x>φ) we see that

∂p

∂φ
= h′(x>φ)x and

∂2p

∂φ>∂φ
= h′′(x>φ)xx>

Applying the chain rule we see that

∂f(y)

∂φ
=
∂f

∂p
h′(x>φ)x and

∂2f(y)

∂φ>∂φ
=

(
∂f(y)

∂p
h′′(x>φ) +

∂2f(y)

∂p2
(h′(x>φ)2

)
xx>

Recall that expressions for h′(·) and h′′(·) are given by (2).

5 The Db Distribution

The likelihood is the probability mass function which depends on a vector of parameters
θ = (α, β)> and is somewhat complicated to write down. In order to obtain an expression
for this probabilty mass function we need to define

h0(y) = (y(1− y))−1

h(y) = h0((y − nbot + 1)/(ntop − nbot + 2))

T1(y) = log((y − nbot + 1)/(ntop − nbot + 2))

T2(y) = log((ntop − y + 1)/(ntop − nbot + 2))

A(α, β) = log

 ntop∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

Given these definition the probability mass function of the Db distribution can be written
as

f(y, α, β) = Pr(X = y | α, β) = h(y) exp{αT1(y) + βT2(y)−A(α, β)} .

We model α and β via

α = x>φ1

β = x>φ2
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where x is a vector of predictors and φ1 and φ2 are vectors of predictor coefficients. The
vector φ, with respect to which we seek to differentiate the likelihood, is the catenation of
φ1 and φ2.

The first derivative of the likelihood with respect to φ is

∂f

∂φ
=
∂f

∂α

∂α

∂φ
+
∂f

∂β

∂β

∂φ

=
∂f

∂α

[
∂α
∂φ1

0

]
+

[
0
∂β

∂φ2

]

=
∂f

∂α

[
x
0

]
+
∂f

∂β

[
0
x

]
=

[
∂f
∂αx
∂f
∂βx

]

The second derivative is calculated as

∂2f

∂φ>∂φ
=

 ∂

∂φ>

(
∂f
∂αx

)
∂

∂φ>

(
∂f
∂βx

)
 .

Taking this expression one row at a time we see that

∂

∂φ>

(
∂f

∂α

)
=

[
∂

∂φ>1

(
∂f
∂α

)
∂

∂φ>2

(
∂f
∂α

) ]
=
[

∂2f
∂α2

∂α

∂φ>1

∂2f
∂β∂α

∂β

∂φ>2

]
=
[

∂2f
∂α2x

> ∂2f
∂β∂αx

>
]

and likewise

∂

∂φ>

(
∂f

∂β

)
=
[

∂2f
∂β∂αx

> ∂2f
∂β2x

>
]
.

Combining the foregoing we get

∂2f

∂φ>∂φ
=

 ∂2f
∂α2xx

> ∂2f
∂β∂αxx

>

∂2f
∂β∂αxx

> ∂2f
∂β2xx

>

 .

As was the case for the three distributions for which θ is a scalar, it is expedient to express
the partial derivatives of f(y, α, β), with respect to the parameters of the distribution, in
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terms of f(y, α, β) The required expressions are as follows:

∂f

∂α
= f(y, α, β)

(
T1(y)− ∂A

∂α

)
∂f

∂β
= f(y, α, β)

(
T2(y)− ∂A

∂β

)
∂2f

∂α2
= f(y, α, β)

[(
T1(y)− ∂A

∂α

)2

− ∂2A

∂α2

]
∂2f

∂α∂β
= f(y, α, β)

[(
T1(y)− ∂A

∂α

)(
T2(y)− ∂A

∂β

)
− ∂2A

∂α∂β

]
∂2f

∂β2
= f(y, α, β)

[(
T2(y)− ∂A

∂β

)2

− ∂2A

∂β2

]
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It remains to provide expressions for the partial derivatives of A with respect to α and β.
Let

E = exp(A) =

ntop∑
i=nbot

h(i) exp{αT1(i) + βT2(i)} .

Clearly

∂A

∂α
=

1

E

∂E

∂α
∂A

∂β
=

1

E

∂E

∂β

∂2A

∂α2
=

1

E

∂2E

∂α2
− 1

E2

(
∂E

∂α

)2

∂2A

∂α∂β
=

1

E

∂2E

∂α∂β
− 1

E2

(
∂E

∂α

∂E

∂β

)
∂2A

∂β2
=

1

E

∂2E

∂β2
− 1

E2

(
∂E

∂β

)2

Finally, the relevant partial derivatives of E are:

∂E

∂α
=

ntop∑
i=nbot

h(i)T1(i) exp(αT1(i) + βT2(i))

∂E

∂β
=

ntop∑
i=nbot

h(i)T2(i) exp(αT1(i) + βT2(i))

∂2E

∂α2
=

ntop∑
i=nbot

h(i)T1(i)
2 exp(αT1(i) + βT2(i))

∂2E

∂α∂β
=

ntop∑
i=nbot

h(i)T1(i)T2(i) exp(αT1(i) + βT2(i))

∂2E

∂β2
=

ntop∑
i=nbot

h(i)T2(i)
2 exp(αT1(i) + βT2(i)) .

6 The Multinom Distribution

This distribution is very different from those with which we have previously dealt. It is
defined effectively in terms of tables. In the hidden Markov model context, these tables
take the form

Pr(Y = yi | S = k) = ρik

where Y is the emissions variate, its possible values or “levels” are y1, y2, . . . , ym, and S
denotes “state” which (wlog) takes values 1, 2, . . . ,K. Of course ρ·k = 1 for all k. We shall
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denote Pr(Y = y | S = k) = ρik by fk(y). Thus instead of having a single probability mass
function, we have K of them.

The maximisation of the likelihood with respect to the ρik is awkward, due to the forgoing
“sum-to-1” constraint, and it is better to impose this constraint “smoothly” via a logistic
parameterisation. Such a parameterisation also allows us to express the dependence upon
“state” in terms of linear predictors, which opens up the possibility of including predictors,
other than those determined by “state”, in the model.

To this end we define vectors of parameters φi, i = 1, . . . ,m, corresponding to each of the
possible values of Y . For identifiability we take φm to be identically 0. Each φi is a vector
of length np, say, where np is the number of predictors. If, in a K state model, there are
no predictors other than those determined by state, then np = K. In this case there are
K× (m−1) “free” parameters, just as there should be (and just at there are in the original
parameterisation in terms of the ρik). Let the kth entry of φi be φik, k = 1, . . . , np. Let
φ be the vector consisting of the catenation of all of the φij , excluding the entries of φm
which are all 0:

φ = (φ11, φ12, . . . , φ1,np, φ21, φ22, . . . , φ2,np, . . . , . . . , φm−1,1, φm−1,2, . . . , φm−1,np)
> .

Let x be a vector of predictors. In terms of the foregoing notation, fk(y) can be written as

fk(y) =
ex
>φy

Z

where in turn

Z =
k∑
`=1

ex
>φ` .

The dependence of fk(y) upon the state k is incorporated in the predictor vector x which
includes predictors indicating state. We now calculate the partial derivatives of fk(y) with
respect to φ. First note that ∂f

∂φ
can be written as

∂fk
∂φ1

∂fk
∂φ2

...
∂fk

∂φm−1

 .

Next we calculate
∂fk(y)

∂φi
, i = 1, . . . ,m− 1 .

Using logarithmic differentiation we see that

1

fk(y)

∂fk(y)

∂φi
= δyix−

1

Z
ex
>φix
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so that
∂fk(y)

∂φi
= fk(y)

(
δyi −

ex
>φi

Z

)
which can be written as fk(y)(δyi − fk(i))x.

In summary we have

∂f

∂φ
= fk(y)


(δy1 − fk(1))x
(δy2 − fk(2))x

...
(δy,m−1 − fk(m− 1))x


The second derivatives of fk(y) with respect to φ are given by

∂2f

∂φ∂φ>
=



∂2f

∂φ1∂φ
>
1

∂2f

∂φ1∂φ
>
2

. . . ∂2f

∂φ1∂φ
>
m−1

∂2f

∂φ2∂φ
>
1

∂2f

∂φ2∂φ
>
2

. . . ∂2f

∂φ2∂φ
>
m−1

...
...

...
...

∂2f

∂φm−1∂φ
>
1

∂2f

∂φm−1∂φ
>
2

. . . ∂2f

∂φm−1∂φ
>
m−1


The (i, j)th entry of ∂2f

∂φ∂φ>
, i.e. ∂2f

∂φi∂φ
>
j

, is given by

∂

∂φi

(
∂y

∂φ>j

)
=

∂

∂φi

(
fk(y)(δyj − fk(j)x>

)
= fk(y)(0− fk(j)(δij − fk(i))xx>) + fk(y)(δyi − fk(i))x(δyj − fk(j))x>

= fk(y)(−fk(j)(δij − fk(i)) + (δyj − fk(i))(δyj − fk(j)))xx>

= fk(y)(fk(i)(fk(j)− δijfk(j) + (δyi − fk(i))(δyj − fk(j)))xx>

At first glance this expression seems to be anomalously asymmetric in i and j, but the
asymmetry is illusory. Note that when i 6= j, δijfk(j) is 0, and when i = j, δijfk(j) =
fk(j) = fk(i).

In summary we see that

∂2f

∂φ∂φ>
=


a11xx

> a12xx
> . . . a1,m−1xx

>

a21xx
> a22xx

> . . . a2,m−1xx
>

...
...

...
...

am−1,1xx
> am−1,2xx

> . . . am−1,,m−1xx
>


where aij = fk(y)(fk(i)(fk(j)− δijfk(j) + (δyi − fk(i))(δyj − fk(j)), i, j = 1, . . . ,m− 1.
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