Derivatives of the Likelihood of a Single
Observation from a Generalised Linear Hidden
Markov Model

1 Structure of the Model

The likelihood of a hidden Markov model is calculated (by means of a recursive procedure)
from likelihoods of single observations which are of the form f(y,8). These expressions
may be either probability density functions or a probality mass functions. The symbol y
represents an observation and @ represents a vector of parameters upon which the distribu-
tion in question depends. These parameters depend in turn on the underlying state of the
hidden Markov chain and in general upon other predictors (in addition to “state”). The
dependence of 8 upon the predictors will involve further parameters. In order to effect the
recursive procedure referred to above, we need to calculate the first and second derivatives,
with respect to all of the parameters that are involved, of the single observation likelihoods

f(y,0).

We are concerned with five distributions: Gaussian, Poisson, Binomial, Db (“discretised
beta”) and Multinom. In the Poisson and Binomial cases the models are generalised linear
models. In the Gaussian and Db cases the models are “something like, but not exactly” gen-
eralised linear models. In the case of the Multinom (or “discnp” — discrete non-parametric)
distribution the model in question bears some relationship to a generalised linear model but
is of a substantialy different form. We shall use the expression “extended generalised hid-
den Markov models”. to describe the collection of all models under consideration, including
those based on the Gaussian, Db and Multinom distributions.

In the case of the Gaussian distribution @ = (u, )" where p is the mean and o is the
standard deviation of the distribution. In the cases of the Poisson and Binomial distributions
0 is actually a scalar (which we consequently write simply at ). For the Poisson distribution
0 is equal to A, the Poisson mean, and for the Binomial distribution 6 is equal to p, the
binomial success probability. In the case of the Db distribution, 8 is equal to (a, 3)" the
vector of “shape” parameters of the distribution. In the case of the Multinom distribution,
the model (as indicated above) has a rather different structure.

Except in the Gaussian case we assume that 8 is completely determined by a vector x
of predictor variables and a vector ¢ of predictor coeflicients. We need to determine the
first and second derivatives, of the likelihood of a single observation, with respect to the
entries of ¢, and in the case of the Gaussian distribution, with respect to the ;. We now



provide the details of the calculation of these derivatives for each of the five distributions
in question.

2 The Gaussian Distribution

We denote the vector of standard deviations by & = (071,...,0x)" (where K is the number
of states). In the current development we assume that o; depends only on the state i of the
underlying hidden Markov chain (and not on any other prectors included in . It is thus
convenient to make explicit the dependence of the probability density functions upon the
underlying state. We write the probability density function corresponding to state ¢ as

i) = e (L)
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We model 11 as 1 = ' ¢p. Note that consequently ;o depends, in general, upon the state i
although this dependence « is not made explicit in the foregoing expression for f;(y). We
need to differentiate f;(y) with respect to ¢ and o.

It is straightforward, using logarithmic differentiation, to determine that:
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An application of the chain rule then gives:
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The second derivatives of f;(y) with respect to ¢ are given by
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since do;/0¢p = 0.

The second derivatives of f;(y) with respect to ¢ and o are given by
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is provided in (1).

The structure of the first and second derivatives of f;(y) with respect to ¢ and o can be
expressed concisely by letting

and then writing
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where §; is a vector of dimension K whose ith entry is 1 and whose other entries are all 0,
and
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Note that the firts and second partial derivatives of f;(y) with respect to p and o; are
provided in (1).

3 The Poisson Distribution

The likelihood is the probability mass function

\Y
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y = 0,1,2,.... Here 6 is a scalar, # = )\, and we model \ via A = exp(x'¢), where x

is a vector of predictors and ¢ is a vector of predictor coefficients. The first and second
derivatives of f(y) with respect to \ are
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Since A = exp(x ' ¢) it follows readily that the first and second derivatives of A with respect
to ¢ are lambdax and \xxz ", respectively. Applying the chain rule we get
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4 The Binomial Distribution

The likelihood is the probability mass function
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y=20,1,2,...,n, where n is the number of independent binomial trials on which the success
count y is based, and p is the probability of success. Here 6 is a scalar, # = p, and we model
p via p = h(u) where u = x ' ¢, where @ is a vector of predictors, ¢ is a vector of predictor
coefficients and h(u) is the logit function h(u) = (1 +e~%)71.

In what follows we will need the first and second derivatives of the logit function. These
are given by
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The first and second derivatives of f(y) with respect to p are
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Since p = h(x " ¢) we see that
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Recall that expressions for h'(-) and h”(-) are given by (2).

5 The Db Distribution

The likelihood is the probability mass function which depends on a vector of parameters
0 = («, ﬁ)T and is somewhat complicated to write down. In order to obtain an expression
for this probabilty mass function we need to define

ho(y) = (y(1 —y) ™"

h(y) = ho((y — 1ot + 1)/ (1top — Mbot + 2))
T1(y) = log((y — nwot + 1)/ (Mtop — Mot + 2))
T5(y) = log((ntop — ¥ + 1)/ (Ntop — Mot + 2))
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Given these definition the probability mass function of the Db distribution can be written
as
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where x is a vector of predictors and ¢; and ¢, are vectors of predictor coefficients. The
vector ¢, with respect to which we seek to differentiate the likelihood, is the catenation of

¢, and ¢@s.
The first derivative of the likelihood with respect to ¢ is
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The second derivative is calculated as
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Taking this expression one row at a time we see that
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Combining the foregoing we get
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As was the case for the three distributions for which 8 is a scalar, it is expedient to express
the partial derivatives of f(y,a, ), with respect to the parameters of the distribution, in



terms of f(y, «, ) The required expressions are as follows:
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It remains to provide expressions for the partial derivatives of A with respect to o and .
Let

Ntop
E=exp(A) = Y h(i)exp{aTi(i) + BTa(i)} .
i=MNhot
Clearly

0A 10FE

da  Eda

0A 10FE

o8 EIB

PA  1PE 1 (9E\?
M_EW_E?<604>
9?A 1 9*°E 1 (OEOE
0008~ E0adB E? (aaaﬁ)
A 10°E 1 (9E\?
c‘W‘Eaﬁ?_E?<86>

Finally, the relevant partial derivatives of E are:
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6 The Multinom Distribution

This distribution is very different from those with which we have previously dealt. It is
defined effectively in terms of tables. In the hidden Markov model context, these tables
take the form

Pr(Y =y | S=k) = pir

where Y is the emissions variate, its possible values or “levels” are yi,¥%2,...,%m, and S
denotes “state” which (wlog) takes values 1,2,..., K. Of course p.r = 1 for all k. We shall
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denote Pr(Y =y | S = k) = pi by fr(y). Thus instead of having a single probability mass
function, we have K of them.

The maximisation of the likelihood with respect to the p;; is awkward, due to the forgoing
“sum-to-1” constraint, and it is better to impose this constraint “smoothly” via a logistic
parameterisation. Such a parameterisation also allows us to express the dependence upon
“state” in terms of linear predictors, which opens up the possibility of including predictors,
other than those determined by “state”, in the model.

To this end we define vectors of parameters ¢,, ¢ = 1,...,m, corresponding to each of the
possible values of Y. For identifiability we take ¢,,, to be identically 0. Each ¢, is a vector
of length np, say, where np is the number of predictors. If, in a K state model, there are
no predictors other than those determined by state, then np = K. In this case there are
K x (m—1) “free” parameters, just as there should be (and just at there are in the original
parameterisation in terms of the p;;). Let the kth entry of ¢, be ¢y, k = 1,... ,np. Let
¢ be the vector consisting of the catenation of all of the ¢;;, excluding the entries of ¢,,
which are all 0:
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Let x be a vector of predictors. In terms of the foregoing notation, fi(y) can be written as
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The dependence of fi(y) upon the state k is incorporated in the predictor vector & which

includes predictors indicating state. We now calculate the partial derivatives of fx(y) with

respect to ¢. First note that % can be written as
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so that
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which can be written as fi(y)(dy — fi(7))x.

In summary we have
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The second derivatives of fi(y) with respect to ¢ are given by
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At first glance this expression seems to be anomalously asymmetric in ¢ and j, but the
asymmetry is illusory. Note that when i # j, 0;; fx(j) is 0, and when i = j, & fr(j) =
fu(G) = fi(@).

In summary we see that
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where a;; = fi(y)(fr(0)(fr(j) — 0 fu(d) + (0yi — fr(0))(0y5 — fr(4)), 4,5 = 1,...,m — 1.
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