Derivatives of the Likelihood of a Single Observation from a
Generalised Linear Hidden Markov Model

1 Structure of the Model

The likelihood of a single observation is of the form f(y, 8), which may be either a probability
density function or a probality mass function. The symbol y represents an observation and
0 represents a vector of parameters upon which the distribution in question depends. We
are concerned with five distributions: Gaussian, Poisson, Binomial, Dbd and Multinom. In
the Poisson and Binomial cases the models are generalised linear models. In the Gaussian
and Dbd cases the models are “something like, but not exactly” generalised linear models.
In the case of the Multinom (or “discnp” — discrete non-parametric) distribution the model
in question bears some relationship to a generalised linear model but is of a substantialy
different form.

In the case of the Gaussian distribution @ = (u,0)" where p is the mean and o is the
standard deviation of the distribution. In the cases of the Poisson and Binomial distributions
0 is actually a scalar (which we consequently write simply at ). For the Poisson distribution
0 is equal to A, the Poisson mean, and for the Binomial distribution € is equal to p, the
binomial success probability. In the case of the Dbd distribution, 8 is equal to (a, 3) " the
vector of “shape” parameters of the distribution. In the case of the Multinom distribution,
the model (as indicated above) has a rather different structure.

In all cases we assume that 6 is determined by a vector @ of predictor variables and a vector
¢ of predictor coefficients. We need to determine the first and second derivatives, of the
likelihood of a single observaton, with respect to the entries of ¢. We now provide the
details of the calculation of these derivatives for each of the five distributions in question.

2 The Gaussian Distribution

The likelihood is the probability density function
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Note that we write the likelihood simply as f(y), suppressing the dependence upon the



parameters. Recall that @ = (u,0)". We model 8 via
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where x is a vector of predictors, ¢; and ¢, are vectors of predictor coefficients, hq(u) is
identically u and ho(u) = exp(u). The latter specification ensures that the value o is always
positive. The vector ¢, with respect to which we seek to differentiate the likelihood, is the

catenation of ¢; and ¢,
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It is straightforward, using logarithmic differentiation, to determine that:
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An application of the chain rule then gives:
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The second derivatives with respect to ¢; and ¢, are given by
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The foregoing can be summarised by saying
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The second derivatives of f(y) with respect to p and o are given by (1).

3 The Poisson Distribution

The likelihood is the probability mass function

Y
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y = 0,1,2,.... Here @ is a scalar, § = X\, and we model A via A = exp(:z:Tq.')), where x

is a vector of predictors and ¢ is a vector of predictor coefficients. The first and second



derivatives of f(y) with respect to \ are
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Since A = exp(x ' ¢) it follows readily that the first and second derivatives of A with respect
to ¢ are lambdax and \xx ', respectively. Applying the chain rule we get
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4 The Binomial Distribution

The likelihood is the probability mass function

s = (1) pr
Y

y=0,1,2,...,n, where n is the number of independent binomial trials on which the success

count y is based, and p is the probability of success. Here 6 is a scalar, # = p, and we model

p via p = h(u) where u = x ' ¢, where @ is a vector of predictors, ¢ is a vector of predictor

coefficients and h(u) is the logit function h(u) = (1 +e~%)~L

In what follows we will need the first and second derivatives of the logit function. These
are given by
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The first and second derivatives of f(y) with respect to p are
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Since p = h(x " ¢) we see that
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Applying the chain rule we see that
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Recall that expressions for h'(-) and h”(-) are given by (2).

5 The Dbd Distribution

The likelihood is the probability mass function which depends on a vector of parameters
0 = (a,beta)" and is somewhat complicated to write down. In order to obtain an expression
for this probabilty mass function we need to define

ho(y) = (y(1 —y))~"

h(y) = ho((y — nbot + 1)/ (1top — Mbot + 2))
T1(y) = log((y — nbot + 1)/ (Mtop — Mbot +2))
T5(y) = log((ntop — ¥ + 1)/ (Ntop — Mot + 2))
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Given these definition the probability mass function of the Dbd distribution can be written
as
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We model « and § via
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where x is a vector of predictors and ¢; and ¢, are vectors of predictor coefficients. As

in the case of the Gaussian distributon, the vector ¢, with respect to which we seek to
differentiate the likelihood, is the catenation of ¢, and ¢,.

The first derivative of the likelihood with respect to ¢ is
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The second derivative is calculated as
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Taking this expression one row at a time we see that
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Combining the foregoing we get
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As was the case for the three distributions for which 6 is a scalar, it is expedient to express
the partial derivatives of f(y,«, ), with respect to the parameters of the distribution, in
terms of f(y, «, ) The required expressions are as follows:
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It remains to provide expressions for the partial derivatives of A with respect to o and .
Let
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Finally, the relevant partial derivatives of E are:
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6 The Multinom Distribution

This distribution is very different from those with which we have previously dealt. It is
defined effectively in terms of tables. In the hidden Markov model context, these tables
take the form

Pr(Y =y | S=k) = pir

where Y is the emissions variate, its possible values or “levels” are yi,¥%2,...,%m, and S
denotes “state” which (wlog) takes values 1,2,..., K. Of course p.r = 1 for all k. We shall
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denote Pr(Y =y | S = k) = pi by fr(y). Thus instead of having a single probability mass
function, we have K of them.

The maximisation of the likelihood with respect to the p;; is awkward, due to the forgoing
“sum-to-1” constraint, and it is better to impose this constraint “smoothly” via a logistic
parameterisation. Such a parameterisation also allows us to express the dependence upon
“state” in terms of linear predictors, which opens up the possibility of including predictors,
other than those determined by “state”, in the model.

To this end we define vectors of parameters ¢,, ¢ = 1,...,m, corresponding to each of the
possible values of Y. For identifiability we take ¢,,, to be identically 0. Each ¢, is a vector
of length np, say, where np is the number of predictors. If, in a K state model, there are
no predictors other than those determined by state, then np = K. In this case there are
K x (m—1) “free” parameters, just as there should be (and just at there are in the original
parameterisation in terms of the p;;). Let the kth entry of ¢, be ¢y, k = 1,... ,np. Let
¢ be the vector consisting of the catenation of all of the ¢;;, excluding the entries of ¢,,
which are all 0:
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Let x be a vector of predictors. In terms of the foregoing notation, fi(y) can be written as
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The dependence of fi(y) upon the state k is incorporated in the predictor vector & which

includes predictors indicating state. We now calculate the partial derivatives of fx(y) with

respect to ¢. First note that % can be written as
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so that
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which can be written as fi(y)(dy — fi(7))x.

In summary we have
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The second derivatives of fi(y) with respect to ¢ are given by
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At first glance this expression seems to be anomalously asymmetric in ¢ and j, but the
asymmetry is illusory. Note that when i # j, 0;; fx(j) is 0, and when i = j, & fr(j) =
fu(G) = fi(@).

In summary we see that
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where a;; = fi(y)(fr(0)(fr(j) — 0 fu(d) + (0yi — fr(0))(0y5 — fr(4)), 4,5 = 1,...,m — 1.



