fhircrackr: Download FHIR resources
2021-06-04

This vignette covers the following topics:
o Building FHIR search requests
e Downloading resources from a FHIR server
e Authentication
e Search via POST
e Dealing with HT'TP errors
e Saving the downloaded bundles
e Dealing with large data sets
e Downloading the capability statement

Before running any of the following code, you need to load the fhircrackr package:

library(fhircrackr)

FHIR search requests

To download FHIR resources from the server, you need to specify which resources you want with a FHIR
search request. If you are already familiar with the topic and prefer writing your FHIR search request yourself,
you can just define your search request as a simple string that you provide to fhir_search(). In that case,
however, no checking of spelling mistakes of resource types and URL encoding will be done for you. If you
are comfortable with this, you can skip the following paragraph, as the first part of this vignette introduces
the basics of FHIR search and some functions to build valid FHIR search requests with fhircrackr.

A FHIR search request will mostly have the form [basel/[typel 7parameter(s), where [base] is the base
URL to the FHIR server you are trying to access, [type] refers to the type of resource you are looking for
and parameter (s) characterize specific properties those resources should have. The function fhir_url()
offers a solution to bring those three components together correctly, taking care of proper formatting for you.

In the simplest case, fhir_url() takes only the base url and the resource type you are looking for like this:

fhir_url("http://hapi.fhir.org/baseR4",
"Patient")

An object of class "fhir_url"

[1] "http://hapt.fhir.org/baseRl/Patient”

Internally, fhir_resource_type is called to check the type you provided against list of all currently available
resource types can be found at https://hl7.org/FHIR /resourcelist.html. Case errors are corrected
automatically and the function throws a warning, if the resource type doesn’t match the list under hl7.org:

fhir_resource_type("Patient") #Correct

A fhir_resource_type object: Patient
fhir_resource_type("medicationstatement") #corrected

Changing resource type "medicationstatement” into "MedicationStatement'.
A fhir_resource_type object: MedicationStatement

https://hl7.org/FHIR/resourcelist.html

Beside telling the server which resource type to give back, the resource type also determines the kinds of
search parameters that are allowed. Search parameters are use to further qualify the resources you want to
get back, e.g by restricting the search result to Patient resources of female patients only.

You can add zero, one, or multiple search parameters to the request. If you don’t give any parameters, the
search will just return all resources of the specified type from the server. Search parameters generally come
in the form key = value. There are a number of resource independent parameters that can be found under
https://www.hl7.org/fhir /search.html#Summary. These parameters usually have a _ at the beginning.
"_sort" = "status" for examples sorts the results by their status, "_include" = "Observation:patient",
will include the linked Patient resources in a search for Observation resources.

Apart from the resource independent parameters, there are also resource dependent parameters referring to
elements specific to that resource. These parameters come without a _ and you can find a list of them at the
end of every resource site e.g. at https://www.hl7.org/fhir/patient.html#search for the Patient resource. An
example of such a parameter would be "birthdate" = "1t2000-01-01" for patients born before the year
2000 or "gender" = "female" to get female patients only.

You can add search parameters to you request in a named list or named character vector this:

request <- fhir_url("http://hapi.fhir.org/baseR4",
"Patient",
list("birthdate" = "1t2000-01-01",
"code" = "http://loinc.orgl|1751-1")

request

An object of class "fhir_url"

[1] "http://hapi.fhir.org/baseR,/Patient?birthdate=1t2000-01-01&code=http://
loinc.orgls7C1751-1"

As you can see, fhir_url() performs automatic url encoding and the | is transformed to %7C.

Accessing the current request

Whenever you call fhir_url() or fhir_search(), the corresponding FHIR search request will be saved
implicitly and can be accessed with fhir_current_request ()

If you call fhir_search() without providing an explicit request, the function will automatically call
fhir_current_request ().

Download FHIR resources from a server

To download resources from a server, you use the function fhir_search() and provide a FHIR search request.

Basic request

We will start with a very simple example and use fhir_search() to download Patient resources from a
public HAPI server:

request <- fhir_url("https://hapi.fhir.org/baseR4",
"Patient")
patient_bundles <- fhir_search(request,
2, 0)

In general, a FHIR search request returns a bundle of the resources you requested. If there are a lot of
resources matching your request, the search result isn’t returned in one big bundle but distributed over
several of them, sometimes called pages, the size of which is determined by the FHIR server. If the argument

https://www.hl7.org/fhir/search.html#Summary
https://www.hl7.org/fhir/patient.html#search

max_bundles is set to its default Inf, fhir_search() will return all available bundles/pages, meaning all
resources matching your request. If you set it to 2 as in the example above, the download will stop after the
first two bundles. Note that in this case, the result may not contain all the resources from the server matching
your request, but it can be useful to first look at the first couple of search results before you download all of
them.

If you want to connect to a FHIR server that uses basic authentication, you can supply the arguments
username and password. If the server uses some bearer token authentication, you can provide the token in
the argument token. See below for more information on authentication.

Because servers can sometimes be hard to reach, fhir_search() will start five attempts to connect to the
server before it gives up. With the arguments max_attempts and delay_between_attempts you can control
this number as well the time interval between attempts.

As you can see in the next block of code, fhir_search() returns an object of class fhir_bundle_list where
each element represents one bundle of resources, so a list of two in our case:

patient_bundles
An object of class "fhir_bundle_list"
[[17]7
A fhir_bundle_zxzml object
No. of entries : 20
Self Link: http://hapi.fhir.org/baseR4/Patient
Next Link: http://hapi.fhir.org/baseR4?_getpages=ce958386-53d0-4042-888c-cad53bf5d5a16 getpagesoffset

#

#

#

#

#

#

{zml_nodel}

<Bundle>

[1] <id value="ce958386-53d0-4042-888c-cad53bf5d5a1"/>

[2] <meta>\n <lastUpdated wvalue="2021-05-10T12:12:43.317+00:00"/>\n</meta>

[3] <type walue="searchset'/>

[4] <link>\n <relation value="self"/>\n <url value="http://hapi.fhir.org/b ...
[5] <link>\n <relation value="next"/>\n <url value="http://hapi.fhir.org/b ...
[6] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837602"/ ...
[7] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR4/Patient/example-r ...
[8] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837624"/ ...
[9] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRl/Patient/1837626"/ ...
[10] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837631"/ ...
[11] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837716"/ ...
[12] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837720"/ ...
[13] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR/Patient/1837714"/ ...
[14] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRl/Patient/1837721"/ ...
[15] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837722"/ ...
[16] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837723"/ ...
[17] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837724"/ ...
[18] <entry>\n <fullUrl value="http://hapti.fhir.org/baseR/Patient/cfsb16116 ...
[19] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837736"/ ...
[20] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837737"/ ...
#
#
#
#
#
#
#
#
#

[[2]]

A fhir_bundle_zxzml object

No. of entries : 20

Self Link: http://hapt.fhir.org/baseR,?_ getpages=ce958386-53d0-4042-888c-cad53bf5d5a1€ getpagesoffset
Next Link: http://hapi.fhir.org/baseR4?_getpages=ce958386-53d0-4042-888c-cad53bf5d5a18 getpagesoffset

{zml_node}

H*

<Bundle>

[1] <id value="ce958386-53d0-4042-888c-cad53bf5d5a1"/>

[2] <meta>\n <lastUpdated value="2021-05-10T12:12:43.317+00:00"/>\n</meta>

[3] <type wvalue="searchset'/>

[4] <link>\n <relation value="self"/>\n <url value="http://hapt.fhir.org/b ...

[5] <link>\n <relation value="next"/>\n <url wvalue="http://hapi.fhir.org/b ...

[6] <link>\n <relation value="previous"/>\n <url wvalue="http://hapi.fhir.o ...

[7] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR/Patient/1837760"/ ...

[8] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR4/Patient/1837766"/ ...

[9] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR4/Patient/1837768"/ ...
[10] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837781"/ ...
[11] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837783"/ ...
[12] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837784"/ ...
[13] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837787"/ ...
[14] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837788"/ ...
[15] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837789"/ ...
[16] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837790"/ ...
[17] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837791"/ ...
[18] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837792"/ ...
[19] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837793"/ ...
[20] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837794"/ ...

HOH O OW R OWH RO OW R OW R RO WRR

If for some reason you cannot connect to a FHIR server at the moment but want to explore the bundles
anyway, the package provides an example list of bundles containing Patient resources. See ?patient_bundles
for how to use it.

More than one resource type

In many cases, you will want to download different types of FHIR resources belonging together. For example
you might want to download all MedicationStatement resources with the snomed code 429374003 and also
download the Patient resources these MedicationStatements refer to. The FHIR search request to do this can
be built like this:

request <- fhir_url(url = "https://hapi.fhir.org/baseR4/",

resource = "MedicationStatement",
parameters = list("code" = "http://snomed.info/ct|429374003",
"_include" = "MedicationStatement:subject")

)

Then you provide the request to fhir_search():

medication_bundles <- fhir_search(request = request, max bundles = 3)

These bundles now contain two types of resources, MedicationStatement resources as well as Patient resources.
If you want to have a look at the bundles, it is not very useful to print them to the console. Instead just save
them as xml-files to a directory of you choice and look at the resources there:

fhir_save(medication_bundles, directory = "MyProject/medicationBundles")

If you want to have a look at a bundle like this but don’t have access to a FHIR server at the moment, check
out “medication_bundles.

Authentication

If your FHIR server is protected with some kind of bearer token authentication, fhir_search() lets
you provide the token as a string or as an object of class Token from the httr package. You can

use fhir_authenticate() to create a token generated by an OAuth2/OpenID Connect process. See
?fhir_authenticate for more information on that topic.

Search via POST

The default behaviour of fhir_search() is to send the FHIR search request as a GET request to the server.
In some special cases, however, it can be useful to use the POST based search described here instead. This is
mostly the case when the URL of you FHIR search request gets long enough to exceed the allowed url length.
A common scenario for this would be a request querying an explicit list of identifiers. Let’s for example say
you are looking for the following list of patient identifiers:

ids <- c("72622884-0209-4ea9-9291-685bce3b0fe3",
"2cad8b68-a641-4be7-a39d-9ffe2691a29a",
"8bcdd92d-5£96-4e07-9f6a-e22a3591ee30",
"2067558f-c9ed-489a-9c2f-7387bb3426a2",
"5077b4b0-07c9-4d03-b9ec-1£f9£f218£8239")

You can use them comma separated in the value of the identifier search parameter like this:

id_string <- paste(ids,)

But this string would make the FHIR search request URL very long, especially if it is combined with additional
other search parameters.

In a search via POST, the search parameters (everything that would usually follow the resource type after
the 7) can be transferred to a body of type application/x-www-form-urlencoded and sent via POST. A
body of this kind can be created the same way the parameters are usually given to the parameters argument
of fhir_url(), i.e. as a named list or character:

body <- fhir_body(list(
"identifier" = id_string,
"_revinclude" = "Observation:patient"))

The body will then automatically be assigned the content type application/x-www—form-urlencoded. If
you provide a body like this in fhir_search(), the url in request should only contain the base URL and
the resource type. The function will automatically amend it with the suffix _search and perform a POST:

url <- fhir_url("https://hapi.fhir.org/baseR4/", "Patient")

bundles <- fhir_search(url, body)

Dealing with HTTP Errors

fhir_search() internally sends a GET or POST request to the server. If anything goes wrong, e.g. because
your request wasn’t valid or the server caused an error, the result of you request will be a HTTP error.
fhir_search() will print the error code along with some suggestions for the most common errors to the
console.

To get more detailed information on the error response, you can pass a string with a file name to the argument
log_errors . This will write a log with error information to the specified file.

medication_bundles <- fhir_search(request,
3,
"myErrorFile")

https://www.hl7.org/fhir/search.html#Introduction

Saving the downloaded bundles

There are two ways of saving the FHIR bundles you downloaded: Either you save them as R objects, or you
write them to an xml file.

Save bundles as R objects

If you want to save the list of downloaded bundles as an .rda or .RData file, you can’t just use R’s save ()
or save_image() on it, because this will break the external pointers in the xml objects representing your
bundles. Instead, you have to serialize the bundles before saving and unserialize them after loading. For
single xml objects the package xm12 provides serialization functions. For convenience, however, fhircrackr
provides the functions fhir_serialize() and fhir_unserialize () that can be used directly on the bundles
returned by fhir_search():

#serialize bundles
serialized_bundles <- fhir_serialize(patient_bundles)

#have a look at them
head(serialized_bundles[[1]])
[1] 58 Oa 00 00 00 03

#create temporary directory for saving
temp_dir <- tempdir()

#save
save(serialized_bundles, file=pasteO(temp_dir, "/bundles.rda"))

If you load this bundle again, you have to unserialize it before you can work with it:

#load bundles
load(pasteO(temp_dir, "/bundles.rda"))

#unsertalize
bundles <- fhir_unserialize(serialized_bundles)

#have a look

bundles

An object of class "fhir_bundle_list"

[[1]]

A fhir_bundle_xzml object

No. of entries : 20

Self Link: http://hapt.fhir.orqg/baseR)/Patient

Next Link: http://hapt.fhir.org/baseR,? getpages=ce958386-53d0-4042-888c-cad53bf5d5a1€ getpagesoffset
#

{xzml_nodel

<Bundle>

[1] <id value="ce958386-53d0-4042-888c-cad53bf5d5a1"/>

[2] <meta>\n <lastUpdated value="2021-05-10T12:12:43.317+00:00"/>\n</meta>

[3] <type wvalue="searchset'/>

[4] <link>\n <relation value="self"/>\n <url value="http://hapi.fhir.org/b ...
[5] <link>\n <relation wvalue="nezt"/>\n <url value="http://hapi.fhir.org/b ...
[6] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837602"/ ...
[7] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRl/Patient/example-r ...
[8] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRl/Patient/1837624"/ ...
[9] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837626"/ ...
[10] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837631"/ ...
[11] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837716"/ ...

[12] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837720"/ ...
[13] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837714"/ ...
[14] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837721"/ ...
[15] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837722"/ ...
[16] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR/Patient/1837723"/ ...
[17] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837724"/ ...
[18] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/cfsb16116 ...
[19] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837736"/ ...
[20] <entry>\n <fullUrl wvalue="http://hapi.fhir.orqg/baseR,/Patient/1837737"/ ...

[[2]]

A fhir_bundle_zxzml object

No. of entries : 20

Self Link: http://hapt.fhir.orqg/baseR{?_getpages=ce958386-53d0-4042-888c-cadb3bf5d5a18 getpagesoffset
Next Link: http://hapt.fhir.org/baseR{?_getpages=ce958386-53d0-4042-888c-cadb3bf5d5a16 getpagesoffset

{zml_node}

<Bundle>

[1] <id value="ce958386-53d0-4042-888c-cad53bf5d5a1"/>

[2] <meta>\n <lastUpdated value="2021-05-10T12:12:43.317+00:00"/>\n</meta>

[3] <type wvalue="searchset'/>

[4] <link>\n <relation value="self"/>\n <url value="http://hapi.fhir.orqg/b ...
[5] <link>\n <relation value="next"/>\n <url value="http://hapti.fhir.org/b ...
[6] <link>\n <relation value="previous"/>\n <url wvalue="http://hapi.fhir.o ...
[7] <entry>\n <fullUrl value="http://hapi.fhir.org/baseRs/Patient/1837760"/ ...
[8] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR/Patient/1837766"/ ...
[9] <entry>\n <fullUrl value="http://hapt.fhir.org/baseR/Patient/1837768"/ ...
[10] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837781"/ ...
[11] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837783"/ ...
[12] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837784"/ ...
[13] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837787"/ ...
[14] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837788"/ ...
[15] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837789"/ ...
[16] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837790"/ ...
[17] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837791"/ ...
[18] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR/Patient/1837792"/ ...
[19] <entry>\n <fullUrl wvalue="http://hapi.fhir.org/baseR,/Patient/1837793"/ ...
[20] <entry>\n <fullUrl value="http://hapi.fhir.org/baseR,/Patient/1837794"/ ...

RO R R OW W OWH R R KW W OW R R R W W W OR R R W W W WO HE R W OW W RRER W RR

After unserialization, the pointers are restored and you can continue to work with the bundles. Note that
the example bundles medication_bundles and patient_bundles that are provided with the fhircrackr
package are also provided in their serialized form and have to be unserialized as described on their help page.

Save and load bundles as xml files

If you want to store the bundles in xml files instead of R objects, you can use the functions fhir_save () and
fhir_load(). fhir_save() takes a list of bundles in form of xml objects (as returned by fhir_search())
and writes them into the directory specified in the argument directory. Each bundle is saved as a separate
xml-file. If the folder defined in directory doesn’t exist, it is created in the current working directory.

#save bundles as zml files
fhir_save(patient_bundles, directory = temp_dir)

To read bundles saved with fhir_save() back into R, you can use fhir_load():

bundles <- fhir_load(temp_dir)

fhir_load() takes the name of the directory (or path to it) as its only argument. All xml-files in this directory
will be read into R and returned as a list of bundles in xml format just as returned by fhir_search().

Dealing with large data sets
If you want to download a lot of resources from a server, you might run into several problems.

First of all, downloading a lot of resources will require a lot of time, depending on the performance of
your FHIR server. Because fhir_search() essentially runs a loop pulling bundle after bundle, downloads
can usually be accelerated if the bundle size is increased, because that way we can lower the number of
requests to the server. You can achieve this by adding _count= parameter to your FHIR search request.
http://hapi.fhir.org/baseR4/Patient?_count=500 for example will pull patient resources in bundles of
500 resources from the server.

A problem that is also related to the number of requests to the server is that sometimes servers might crash
when too many requests are sent to them in a row. The third problem is that large amounts of resources can
at some point exceed the working memory you have available. There are two solutions to the problem of
crashing servers and working memory:

1. Use the save__to__disc argument of fhir_ search()

If you pass the name of a directory to the argument save_to_disc in your call to fhir_search(), the
bundles will not be combined in a bundle list that is returned when the downloading is done, but will instead
be saved as xml-files to the directory specified in the argument directory one by one. If the directory you
specified doesn’t exist yet, fhir_search() will create it for you. This way, the R session will only have to
keep one bundle at a time in the working memory and if the server crashes halfway trough, all bundles up to
the crash are safely saved in your directory. You can later load them using fhir_load():

request <- fhir_url("http://hapi.fhir.org/baseR4",
"Patient")
fhir_search(request, 10,

"MyProject/downloadedBundles")

bundles<- fhir_load("MyProject/downloadedBundles")

2. Use fhir_ next_ bundle__url()

Alternatively, you can also use fhir_next_bundle_url (). This function returns the url to the next bundle
from you most recent call to fhir_search():

To get a better overview, we can split this very long link along the &:

strsplit(fhir_next_bundle_url(), "&")

[[1]]

[1] "http://hapi.fhir.org/baseR? getpages=0beld713-a4db-4c27-b384-b772deabcbc"
[2] "_getpagesoffset=200"

[3] "_count=20"

[4] "_pretty=true”

[5] "_bundletype=searchset”

H R R R

You can see two interesting numbers: _count=20 tells you that the queried hapi server has a default bundle
size of 20. getpagesoffset=200 tells you that the bundle referred to in this link starts after resource no.
200, which makes sense since the fhir_search() request above downloaded 10 bundles with 20 resources

each, i.e. 200 resources. If you use this link in a new call to fhir_search, the download will start from this
bundle (i.e. the 11th bundle with resources 201-220) and will go on to the following bundles from there.

When there is no next bundle (because all available resources have been downloaded), fhir_next_bundle_url()
returns NULL.

If a download with fhir_search() is interrupted due to a server error somewhere in between, you can use
fhir_next_bundle_url() to see where the download was interrupted.

You can also use this function to avoid memory issues. Th following block of code utilizes
fhir_next_bundle_url() to download all available Observation resources in small batches of 10
bundles that are immediately cracked and saved before the next batch of bundles is downloaded. Note that
this example can be very time consuming if there are a lot of resources on the server, to limit the number of
iterations uncomment the lines of code that have been commented out here:

#Starting fhir search request

url <- fhir_url("http://hapi.fhir.org/baseR4",
"Observation",
list (" _count" = "500"))

#count <- 0
table_description <- fhir_table_description("Observation")
while(!is.null(url)){

#load 10 bundles
bundles <- fhir_search(url, 10)

#crack bundles
dfs <- fhir_crack(bundles, table_description)

#save cracked bundle to RData-file (can be exzchanged by other data type)
save(tables, pasteO(tempdir(), "/table_", count, ".RData"))

#retrieve starting point for next 10 bundles
url <- fhir_next_bundle_url()

count <- count + 1
if(count >= 20) {break}

Download Capability Statement

The capability statement documents a set of capabilities (behaviors) of a FHIR Server for a particular version
of FHIR. You can download this statement using the function fhir_capability_statement():

cap <- fhir_capability_statement("http://hapi.fhir.org/baseR4", 0)

fhir_capability_statement () takes the base URL of a FHIR server and returns a list of three data
frames containing all information from the capability statement of this server. The first one is called Meta
and contains some general server information. The second is called Rest and contains information on the
operations the server implements. The third is called resources and gives information on the resource types
and associated parameters the server supports. This information can be useful to determine, for example,
which FHIR search parameters are implemented in you FHIR server.

https://www.hl7.org/fhir/capabilitystatement.html

Next steps

To learn about how fhircrackr allows you to convert the downloaded FHIR resources into
data.frames/data.tables, see the vignette on flattening FHIR resources.

10

	FHIR search requests
	Accessing the current request

	Download FHIR resources from a server
	Basic request
	More than one resource type

	Authentication
	Search via POST
	Dealing with HTTP Errors
	Saving the downloaded bundles
	Save bundles as R objects
	Save and load bundles as xml files

	Dealing with large data sets
	1. Use the save_to_disc argument of fhir_search()
	2. Use fhir_next_bundle_url()

	Download Capability Statement
	Next steps

