
fhircrackr: Flatten FHIR resources

2021-06-04

This vignette covers the following topics:

• Extracting one resource type

• The design

• Extracting more than one resource type

• Multiple Entries

• Processing tables with multiple entries

Before running any of the following code, you need to load the fhircrackr package:
library(fhircrackr)

Preparation
In the vignette fhircrackr: Download FHIR resources you saw how to download FHIR resources into R.
Now we’ll have a look at how to flatten them into data.frames/data.tables. For rest of the vignette, we’ll
work with the two example data sets from fhircrackr, which can be made accessible like this:
pat_bundles <- fhir_unserialize(patient_bundles)
med_bundles <- fhir_unserialize(medication_bundles)

See ?patient_bundles and ?medication_bundles for the FHIR search request that generated them.

There are two extraction scenarios when you want to flatten FHIR bundles: Either you want to extract just
one resource type, or you want to extract several resource types. Because the structure of different resource
types is quite dissimilar, it makes sense to create one table per resource type. Therefore the result of the
flattening process in fhircrackr can be either a single table (when extracting just one resource type) or
a list of tables (when extracting more than one resource type). Both scenarios are realized with a call to
fhir_crack(). We will now explain the two scenarios individually.

Extracting one resource type
We’ll start with pat_bundles, which only contains Patient resources. To transform them into a table, we
will use fhir_crack(). The most important argument fhir_crack() takes is bundles, an object of class
fhir_bundle_list that is returned by fhir_search(). The second important argument is design, which
tells the function which data to extract from the bundle. When we want to extract just one resource type, we
can use a fhir_table_description in the argument design.fhir_crack() then returns a single data.frame
or data.table (if argument data.tables=TRUE).

We’ll show you an example of how it works first and then go on to explain the fhir_table_description in
more detail.
pat_table_description <- fhir_table_description(resource = "Patient",

cols = list(id = "id",
gender = "gender",
name = "name/family",
city = "address/city"))

1

table <- fhir_crack(bundles = pat_bundles,
design = pat_table_description,
verbose = 0)

head(table)
id gender name city
1 1837602 male Jacobs <NA>
2 example-r4 male Chalmers Windsor PleasantVille
3 1837624 <NA> <NA> <NA>
4 1837626 male <NA> <NA>
5 1837631 male paredes <NA>
6 1837716 male <NA> <NA>

The table_description

A fhir_table_description holds all the information fhir_crack() needs to create a table from resources
of a certain type. It is created with fhir_table_description() and generally consists of the three elements
that can be provided in the three following arguments:

The resource argument This is basically a string that defines the resource type (e.g. Patient or Observa-
tion) to extract. You set it like this:
fhir_table_description(resource = "Patient")
A fhir_table_description with the following elements:
#
fhir_resource_type: Patient
#
fhir_columns:
An empty fhir_columns object
#
fhir_style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

Internally, fhir_table_description() calls fhir_resource_type() which checks the type you provided
against list of all currently available resource types can be found at https://hl7.org/FHIR/resourcelist.html.
Case errors are corrected automatically and the function throws a warning, if the resource type doesn’t match
the list under hl7.org.

As you can see in the above output, there are two more elements in a fhir_table_description which are
filled automatically by fhir_table_description().

The cols argument The cols argument takes the column names and XPath (1.0) expressions defining the
columns to create from the FHIR resources. If this element is empty, fhir_crack() will extract all available
elements of the resource and name the columns automatically. To explicitly define columns, you can provide
a (named) character or a (named) list with XPath expressions like this:
fhir_table_description(resource = "Patient",

cols = list(gender = "gender",
name = "name/family",
city = "address/city"))

A fhir_table_description with the following elements:
#
fhir_resource_type: Patient

2

https://hl7.org/FHIR/resourcelist.html

#
fhir_columns:
column name | xpath expression

gender | gender
name | name/family
city | address/city
#
fhir_style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

In this case a table with three columns called gender, name and city will be created. They will be filled
with the value attribute that can be found under the respective xpath expressions in the resource. In the
rare cases where you want to extract another attribute (besides value FHIR currently only allows id and url
attributes), you have to add the attribute to the xpath expression like this: "node/node/@id". Note that
this happens extremely rarely.

Internally, fhir_table_description() calls fhir_columns() to check the validity of the XPath expressions
and assign column names. You can provide the XPath expressions in a named or unnamed character vector
or a named or unnamed list. If you choose the unnamed version, the names will be set automatically and
reflect the respective XPath expression:
#custom column names
fhir_columns(c(gender = "gender",

name = "name/family",
city = "address/city"))

column name | xpath expression

gender | gender
name | name/family
city | address/city

#automatic column names
fhir_columns(c("gender", "name/family", "address/city"))
column name | xpath expression

gender | gender
name.family | name/family
address.city | address/city

We strongly advise to only use fully specified relative XPath expressions here, e.g. "ingredient/strength/numerator/code"
and not search paths like "//code", as those can generate unexpected results especially if the searched
element appears on different levels of the resource.

The style argument The final element of a fhir_table_description is a fhir_style object. This
element controls how fhir_crack() deals with multiple entries to the same element and with columns that
are completely empty, i.e. have only NA values. In the outputs above you can see, that the style takes some
default values if you skip it in fhir_table_description(). You can change the defaults like this:
fhir_table_description(resource = "Patient",

cols = list(gender = "gender",
name = "name/family",

3

city = "address/city"),

style = fhir_style(sep = "||",
brackets = c("[","]"),
rm_empty_cols = FALSE))

A fhir_table_description with the following elements:
#
fhir_resource_type: Patient
#
fhir_columns:
column name | xpath expression

gender | gender
name | name/family
city | address/city
#
fhir_style:
sep: '||'
brackets: '[' ']'
rm_empty_cols: FALSE

As you can see, the style is created by a call to fhir_style() which can be used outside of
fhir_table_description(), too:
fhir_style(sep = "||",

brackets = c("[","]"),
rm_empty_cols = FALSE)

sep: '||'
brackets: '[' ']'
rm_empty_cols: FALSE

The sep element is a string defining the separator used when multiple entries to the same attribute are
pasted together. This could for example happen if there is more than one address entry in a Patient resource.
Examples of this are shown further down under the heading Multiple entries.

The brackets element is either an empty character (of length 0) or a character vector of length 2. If it is
empty, multiple entries will be pasted together without indices. If it is of length 2, the two strings provided
here are used as brackets for automatically generated indices to sort out multiple entries (see paragraph
Multiple Entries). brackets = c("[", "]") e.g. will lead to indices like [1.1].

The rm_empty_cols: Can be TRUE or FALSE. If TRUE, columns containing only NA values will be removed, if
FALSE, these columns will be kept.

All three elements of style can also be controlled directly by the fhir_crack() arguments sep, brackets
and remove_empty_columns. If the function arguments are NULL (their default), the values provided in style
are used, if they are not NULL, they will overwrite any values in style.

We will now work through examples using fhir_table_descriptions of different complexity.

Examples

Extract all available attributes Lets start with an example where we only provide the (mandatory)
resource component of the table_description. In this case, fhir_crack() will extract all available attributes
and use default values for the style component:
#define design
table_description1 <- fhir_table_description(resource = "Patient")

4

#Convert resources
table<- fhir_crack(bundles = pat_bundles, design = table_description1, verbose = 0)

#have look at part of the results
table[1:5,1:5]
id meta.versionId meta.lastUpdated meta.source
1 1837602 1 2021-01-26T13:19:57.198+00:00 #rlPNWRjKJIXpIViv
2 example-r4 16 2021-05-05T14:35:25.900+00:00 #SjWscZfVfkMgcAGw
3 1837624 1 2021-01-26T13:34:05.655+00:00 #SHEY4NcGvuguei38
4 1837626 1 2021-01-26T14:04:12.384+00:00 #E88fut6cJLAp8inR
5 1837631 1 2021-01-26T15:34:28.829+00:00 #eKbD4whsoZcSI3eR
text.status
1 generated
2 generated
3 generated
4 generated
5 generated

As you can see, this can easily become a rather wide and sparse data frame. This is due to the fact that
every attribute appearing in at least one of the resources will be turned into a variable (i.e. column), even if
none of the other resources contain this attribute. For those resources, the value on that attribute will be set
to NA. Depending on the variability of the resources, the resulting data frame can contain a lot of NA values.
If a resource has multiple entries for an attribute (e.g. several addresses in a Patient resource), these entries
will pasted together using the string provided in sep as a separator. The column names in this option are
automatically generated by pasting together the path to the respective attribute, e.g. name.given.

Extract specific attributes If we know which attributes we want to extract, we can specify them in a
named list and provide it in the cols component of the data.frame description:
#define design
table_description2 <- fhir_table_description(

resource = "Patient",

cols = list(
PID = "id",
use_name = "name/use",
given_name = "name/given",
family_name = "name/family",
gender = "gender",
birthday = "birthDate"

)
)

#Convert resources
table <- fhir_crack(bundles = pat_bundles, design = table_description2, verbose = 0)

#have look at the results
head(table)
PID use_name given_name family_name
1 1837602 official Jeffrey Jacobs
2 example-r4 official usual maiden Peter James Jim Peter James Chalmers Windsor
3 1837624 <NA> <NA> <NA>
4 1837626 <NA> <NA> <NA>

5

5 1837631 official juan paredes
6 1837716 <NA> <NA> <NA>
gender birthday
1 male 1996-07-08
2 male 1974-12-25
3 <NA> <NA>
4 male 1972-10-13
5 male 2021-01-26
6 male 2021-01-20

This option will return more tidy and clear data frames, because you have full control over the extracted
columns including their name in the resulting table. You should always extract the resource id, because this
is used to link to other resources you might also extract.

If you are not sure which attributes are available or where they are located in the resource, it can be helpful
to start by extracting all available attributes. If you are more comfortable with xml, you can also use
xml2::xml_structure on one of the bundles from your bundle list, this will print the complete xml structure
into your console. Then you can get an overview over the available attributes and their location and continue
by doing a second, more targeted extraction to get your final data frame.

If you want to have a look at how the design looked that was actually used in the last call to fhir_crack()
you can retrieve it with fhir_canonical_design().
fhir_canonical_design()
A fhir_table_description with the following elements:
#
fhir_resource_type: Patient
#
fhir_columns:
column name | xpath expression

PID | id/@value
use_name | name/use/@value
given_name | name/given/@value
family_name | name/family/@value
gender | gender/@value
birthday | birthDate/@value
#
fhir_style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

As you can see the value attributes have been amended by fhir_crack(). This will be done automatically,
whenever the XPath expressions don’t state the attribute explicitly, so you don’t have to mind that part.

Extracting more than one resource type
Of course the previous example is using just one resource type. If you are interested in several types
of resources, you need one fhir_table_description per resource type. You can bundle a bunch of
fhir_table_descriptions in a fhir_design. This is basically a named list of fhir_table_descriptions,
and when you pass it to fhir_crack(), the result will be a named list of tables with the same names as
the design. Consider an example where we have downloaded MedicationStatements referring to a certain
medication as well as the Patient resources these MedicationStatements are linked to.

The design to extract both resource types could look like this:

6

meds <- fhir_table_description(resource = "MedicationStatement",

cols = list(
ms_id = "id",
status_text = "text/status",
status = "status",
med_system = "medicationCodeableConcept/coding/system",
med_code = "medicationCodeableConcept/coding/code",
med_display = "medicationCodeableConcept/coding/display",
dosage = "dosage/text",
patient = "subject/reference",
last_update = "meta/lastUpdated"

),

style = fhir_style(
sep = "|",
brackets = NULL,
rm_empty_cols = FALSE)

)

pat <- fhir_table_description(resource = "Patient")

design <- fhir_design(meds, pat)

In this example, we have spelled out the table_description MedicationStatement completely, while we have
used a short form for Patients. It looks like this:
design
A fhir_design with 2 table_descriptions:
===
Name: meds
#
Resource type: MedicationStatement
#
Columns:
column name | xpath expression

ms_id | id
status_text | text/status
status | status
med_system | medicationCodeableConcept/coding/system
med_code | medicationCodeableConcept/coding/code
med_display | medicationCodeableConcept/coding/display
dosage | dosage/text
patient | subject/reference
last_update | meta/lastUpdated
#
Style:
sep: '|'
brackets: character(0)
rm_empty_cols: FALSE
===
Name: pat
#

7

Resource type: Patient
#
Columns:
An empty fhir_columns object
#
Style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

As you can see, each table_description is identified by a name, which will also be the name of the corresponding
table in the result of fhir_crack().

You can assign the names explicitly, if you prefer:
design <- fhir_design(Medications = meds, Patients = pat)
design
A fhir_design with 2 table_descriptions:
===
Name: Medications
#
Resource type: MedicationStatement
#
Columns:
column name | xpath expression

ms_id | id
status_text | text/status
status | status
med_system | medicationCodeableConcept/coding/system
med_code | medicationCodeableConcept/coding/code
med_display | medicationCodeableConcept/coding/display
dosage | dosage/text
patient | subject/reference
last_update | meta/lastUpdated
#
Style:
sep: '|'
brackets: character(0)
rm_empty_cols: FALSE
===
Name: Patients
#
Resource type: Patient
#
Columns:
An empty fhir_columns object
#
Style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

And you can also extract single table_descriptions by their name:

8

design$Patients
A fhir_table_description with the following elements:
#
fhir_resource_type: Patient
#
fhir_columns:
An empty fhir_columns object
#
fhir_style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

We can use the design for fhir_crack():
list_of_tables <- fhir_crack(bundles = med_bundles, design = design, verbose = 0)

head(list_of_tables$Medications)
ms_id status_text status med_system med_code med_display
1 2084775 generated active http://snomed.info/ct 429374003 simvastatin 40mg
2 2084671 generated active http://snomed.info/ct 429374003 simvastatin 40mg
3 2084572 generated active http://snomed.info/ct 429374003 simvastatin 40mg
4 2084493 generated active http://snomed.info/ct 429374003 simvastatin 40mg
5 2084411 generated active http://snomed.info/ct 429374003 simvastatin 40mg
6 2083903 generated active http://snomed.info/ct 429374003 simvastatin 40mg
dosage patient last_update
1 1 tab once daily Patient/2084708 2021-05-10T05:23:41.686+00:00
2 1 tab once daily Patient/2084604 2021-05-10T03:14:24.264+00:00
3 1 tab once daily Patient/2084505 2021-05-09T20:09:07.446+00:00
4 1 tab once daily Patient/2084426 2021-05-09T18:06:22.183+00:00
5 1 tab once daily Patient/2084344 2021-05-09T15:29:57.406+00:00
6 1 tab once daily Patient/2083836 2021-05-07T18:48:53.657+00:00

head(list_of_tables$Patients)
id meta.versionId meta.lastUpdated meta.source
1 2082559 1 2021-05-06T23:19:31.967+00:00 #wjSG0x8YGkFzMzav
2 2083743 1 2021-05-07T17:53:07.707+00:00 #uTNjj6EX3iU5pKw2
3 2081756 1 2021-05-05T23:32:34.605+00:00 #kWCVkuLJ9rQSAYwj
4 2083836 1 2021-05-07T18:48:48.888+00:00 #c3JUhMltFV87nsAu
5 2084604 1 2021-05-10T03:14:21.154+00:00 #OFuL46MT7dmyDT7v
6 2084505 1 2021-05-09T20:09:02.361+00:00 #TFHQXArZ5OFoRBmc
text.status identifier.system
1 generated http://clinfhir.com/fhir/NamingSystem/identifier
2 generated http://clinfhir.com/fhir/NamingSystem/identifier
3 generated http://clinfhir.com/fhir/NamingSystem/identifier
4 generated http://clinfhir.com/fhir/NamingSystem/identifier
5 generated <NA>
6 generated <NA>
identifier.value name.use
1 Kaushal.Kishore9 official
2 Karlina.Kavi@kaviglobal.com official
3 marcelagillr@hotmail.com official
4 marcelagillr official
5 <NA> official

9

6 <NA> official
name.text
1 Kaushal Kishore
2 Karlina Kavi
3 Marcela Gil
4 Marcela Gil
5 Vicky Walker
6 <U+0417><U+0434><U+043E><U+0440><U+043E><U+0432><U+0435><U+043D><U+044C><U+043A><U+043E> <U+0410><U+0434><U+0430><U+043C> <U+041C><U+0438><U+043A><U+043E><U+043B><U+0430><U+0439><U+043E><U+0432><U+0438><U+0447>
name.family
1 Kishore
2 Kavi
3 Gil
4 Gil
5 Walker
6 <U+0410><U+0434><U+0430><U+043C> <U+041C><U+0438><U+043A><U+043E><U+043B><U+0430><U+0439><U+043E><U+0432><U+0438><U+0447>
name.given
1 Kaushal
2 Karlina
3 Marcela
4 Marcela
5 Vicky
6 <U+0417><U+0434><U+043E><U+0440><U+043E><U+0432><U+0435><U+043D><U+044C><U+043A><U+043E>
gender birthDate
1 male 2000-05-06
2 female 2015-05-07
3 female 1965-09-10
4 female 1965-09-10
5 male 2021-05-09
6 male 1980-09-10

As you can see, the result is a list of two data frames, one for Patient resources and one for MedicationStatement
resources. When you use fhir_crack() with a fhir_desgn() instead of a fhir_table_description, the
result is an object of class fhir_df_list or fhir_dt_list that also has the design attached. You can extract
the design from a list like this using fhir_design():
fhir_design(list_of_tables)
A fhir_design with 2 table_descriptions:
===
Name: Medications
#
Resource type: MedicationStatement
#
Columns:
column name | xpath expression
--
ms_id | id/@value
status_text | text/status/@value
status | status/@value
med_system | medicationCodeableConcept/coding/system/@value
med_code | medicationCodeableConcept/coding/code/@value
med_display | medicationCodeableConcept/coding/display/@value
dosage | dosage/text/@value
patient | subject/reference/@value
last_update | meta/lastUpdated/@value

10

#
Style:
sep: '|'
brackets: character(0)
rm_empty_cols: FALSE
===
Name: Patients
#
Resource type: Patient
#
Columns:
An empty fhir_columns object
#
Style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

Note that this doesn’t work on single tables created with a fhir_table_description.

Saving and reading designs

If you want to save a design for later or to share with others, you can do so using the fhir_save_design().
This function takes a design and saves it as an xml file:
temp_dir <- tempdir()
fhir_save_design(design, file = paste0(temp_dir,"/design.xml"))

To read the design back into R, you can use fhir_load_design():
fhir_load_design(paste0(temp_dir,"/design.xml"))
A fhir_design with 2 table_descriptions:
===
Name: Medications
#
Resource type: MedicationStatement
#
Columns:
column name | xpath expression

ms_id | id
status_text | text/status
status | status
med_system | medicationCodeableConcept/coding/system
med_code | medicationCodeableConcept/coding/code
med_display | medicationCodeableConcept/coding/display
dosage | dosage/text
patient | subject/reference
last_update | meta/lastUpdated
#
Style:
sep: '|'
brackets: character(0)
rm_empty_cols: FALSE
===

11

Name: Patients
#
Resource type: Patient
#
Columns:
An empty fhir_columns object
#
Style:
sep: ' '
brackets: character(0)
rm_empty_cols: TRUE

Multiple entries
A particularly complicated problem in flattening FHIR resources is caused by the fact that there can be
multiple entries to an attribute. The profile according to which your FHIR resources have been built defines
how often a particular attribute can appear in a resource. This is called the cardinality of the attribute. For
example the Patient resource defined here can have zero or one birthdates but arbitrarily many addresses. In
general, fhir_crack() will paste multiple entries for the same attribute together in the data frame, using
the separator provided by the sep argument. In most cases this will work just fine, but there are some special
cases that require a little more attention.

Let’s have a look at an example bundle containing just three Patient resources. You can make it available in
your workspace like this:
bundle <- fhir_unserialize(example_bundles2)

This is how the xml looks:

<Bundle>
<Patient>

<id value='id1'/>
<address>

<use value='home'/>
<city value='Amsterdam'/>
<type value='physical'/>
<country value='Netherlands'/>

</address>
<name>

<given value='Marie'/>
</name>

</Patient>
<Patient>

<id value='id2'/>
<address>

<use value='home'/>
<city value='Rome'/>
<type value='physical'/>
<country value='Italy'/>

</address>
<address>

<use value='work'/>
<city value='Stockholm'/>
<type value='postal'/>
<country value='Sweden'/>

12

https://www.hl7.org/fhir/patient.html#resource

</address>
<name>

<given value='Susie'/>
</name>

</Patient>

<Patient>
<id value='id3'/>
<address>

<use value='home'/>
<city value='Berlin'/>

</address>
<address>

<type value='postal'/>
<country value='France'/>

</address>
<address>

<use value='work'/>
<city value='London'/>
<type value='postal'/>
<country value='England'/>

</address>
<name>

<given value='Frank'/>
</name>
<name>

<given value='Max'/>
</name>

</Patient>

</Bundle>

This bundle contains three Patient resources. The first resource has just one entry for the address attribute.
The second Patient resource has two entries containing the same elements for the address attribute. The
third Patient resource has a rather messy address attribute, with three entries containing different elements
and also two entries for the name attribute.

Let’s see what happens if we extract all attributes:
desc1 <- fhir_table_description(resource = "Patient",

style = fhir_style(sep = " | "))

df1 <- fhir_crack(bundles = bundle, design = desc1, verbose = 0)
df1
id address.use address.city address.type address.country
1 id1 home Amsterdam physical Netherlands
2 id2 home | work Rome | Stockholm physical | postal Italy | Sweden
3 id3 home | work Berlin | London postal | postal France | England
name.given
1 Marie
2 Susie
3 Frank | Max

As you can see, multiple entries for the same attribute (address and name) are pasted together. This works
fine for Patient 2, but for Patient 3 you can see a problem with the number of entries that are displayed.

13

The original Patient resource had three (incomplete) address entries, but because the first two of them use
complementary elements (use and city vs. type and country), the resulting pasted entries look like there
had just been two entries for the address attribute.

You can counter this problem by setting brackets:
desc2 <- fhir_table_description(resource = "Patient",

style = fhir_style(sep = " | ",
brackets = c("[", "]"))

)

df2 <- fhir_crack(bundles = bundle, design = desc2, verbose = 0)
df2
id address.use address.city
1 [1]id1 [1.1]home [1.1]Amsterdam
2 [1]id2 [1.1]home | [2.1]work [1.1]Rome | [2.1]Stockholm
3 [1]id3 [1.1]home | [3.1]work [1.1]Berlin | [3.1]London
address.type address.country name.given
1 [1.1]physical [1.1]Netherlands [1.1]Marie
2 [1.1]physical | [2.1]postal [1.1]Italy | [2.1]Sweden [1.1]Susie
3 [2.1]postal | [3.1]postal [2.1]France | [3.1]England [1.1]Frank | [2.1]Max

Now the indices display the entry the value belongs to. That way you can see that Patient resource 3 had
three entries for the attribute address and you can also see which attributes belong to which entry.

Of course the above example is a very specific case that only occurs if your resources have multiple entries
with complementary elements. In the majority of cases multiple entries in one resource will have the same
structure, thus making numbering of those entries superfluous. But the indices also help to disentangle those
entries and put them in separate rows, as you’ll see in the next paragraph.

Process Data Frames with multiple Entries
Melt data frames with multiple entries

If the data frame produced by fhir_crack() contains multiple entries, you’ll probably want to divide these
entries into distinct observations at some point. This is where fhir_melt() comes into play. fhir_melt()
takes an indexed data frame with multiple entries in one or several columns and spreads (aka melts) these
entries over several rows:
fhir_melt(df2, columns = "address.city", brackets = c("[","]"),

sep=" | ", all_columns = FALSE)
address.city resource_identifier
1 [1]Amsterdam 1
2 [1]Rome 2
3 [1]Stockholm 2
4 [1]Berlin 3
5 <NA> 3
6 [1]London 3

The new variable resource_identifier maps which rows in the created data frame belong to which row
(usually equivalent to one resource) in the original data frame. brackets and sep should be given the same
character vectors that have been used to build the indices in fhir_melt(). columns is a character vector
with the names of the variables you want to melt. You can provide more than one column here but it makes
sense to only have variables from the same repeating attribute together in one call to fhir_melt():

14

cols <- c("address.city", "address.use", "address.type",
"address.country")

fhir_melt(df2, columns = cols, brackets = c("[","]"),
sep=" | ", all_columns = FALSE)

address.city address.use address.type address.country resource_identifier
1 [1]Amsterdam [1]home [1]physical [1]Netherlands 1
2 [1]Rome [1]home [1]physical [1]Italy 2
3 [1]Stockholm [1]work [1]postal [1]Sweden 2
4 [1]Berlin [1]home <NA> <NA> 3
5 <NA> <NA> [1]postal [1]France 3
6 [1]London [1]work [1]postal [1]England 3

If the names of the variables in your data frame have been generated automatically with fhir_crack() you
can find all variable names belonging to the same attribute with fhir_common_columns():
cols <- fhir_common_columns(df2, column_names_prefix = "address")
cols
[1] "address.use" "address.city" "address.type" "address.country"

With the argument all_columns you can control whether the resulting data frame contains only the molten
columns or all columns of the original data frame:
fhir_melt(df2, columns = cols, brackets = c("[","]"),

sep=" | ", all_columns = TRUE)
id address.use address.city address.type address.country
1 [1]id1 [1]home [1]Amsterdam [1]physical [1]Netherlands
2 [1]id2 [1]home [1]Rome [1]physical [1]Italy
3 [1]id2 [1]work [1]Stockholm [1]postal [1]Sweden
4 [1]id3 [1]home [1]Berlin <NA> <NA>
5 [1]id3 <NA> <NA> [1]postal [1]France
6 [1]id3 [1]work [1]London [1]postal [1]England
name.given resource_identifier
1 [1.1]Marie 1
2 [1.1]Susie 2
3 [1.1]Susie 2
4 [1.1]Frank | [2.1]Max 3
5 [1.1]Frank | [2.1]Max 3
6 [1.1]Frank | [2.1]Max 3

Values on the other variables will just repeat in the newly created rows.

If you try to melt several variables that don’t belong to the same attribute in one call to fhir_melt(), this
will cause problems, because the different attributes won’t be combined correctly:
cols <- c(cols, "id")
fhir_melt(df2, columns = cols, brackets = c("[","]"),

sep=" | ", all_columns = TRUE)
id address.use address.city address.type address.country
1 []id1 [1]home [1]Amsterdam [1]physical [1]Netherlands
2 []id2 [1]home [1]Rome [1]physical [1]Italy
3 <NA> [1]work [1]Stockholm [1]postal [1]Sweden
4 []id3 [1]home [1]Berlin <NA> <NA>
5 <NA> <NA> <NA> [1]postal [1]France
6 <NA> [1]work [1]London [1]postal [1]England
name.given resource_identifier

15

1 [1.1]Marie 1
2 [1.1]Susie 2
3 [1.1]Susie 2
4 [1.1]Frank | [2.1]Max 3
5 [1.1]Frank | [2.1]Max 3
6 [1.1]Frank | [2.1]Max 3

Instead, melt the attributes one after another:
cols <- fhir_common_columns(df2, "address")

molten_1 <- fhir_melt(df2, columns = cols, brackets = c("[","]"),
sep=" | ", all_columns = TRUE)

molten_1
id address.use address.city address.type address.country
1 [1]id1 [1]home [1]Amsterdam [1]physical [1]Netherlands
2 [1]id2 [1]home [1]Rome [1]physical [1]Italy
3 [1]id2 [1]work [1]Stockholm [1]postal [1]Sweden
4 [1]id3 [1]home [1]Berlin <NA> <NA>
5 [1]id3 <NA> <NA> [1]postal [1]France
6 [1]id3 [1]work [1]London [1]postal [1]England
name.given resource_identifier
1 [1.1]Marie 1
2 [1.1]Susie 2
3 [1.1]Susie 2
4 [1.1]Frank | [2.1]Max 3
5 [1.1]Frank | [2.1]Max 3
6 [1.1]Frank | [2.1]Max 3

molten_2 <- fhir_melt(molten_1, columns = "name.given", brackets = c("[","]"),
sep=" | ", all_columns = TRUE)

molten_2
id address.use address.city address.type address.country name.given
1 [1]id1 [1]home [1]Amsterdam [1]physical [1]Netherlands [1]Marie
2 [1]id2 [1]home [1]Rome [1]physical [1]Italy [1]Susie
3 [1]id2 [1]work [1]Stockholm [1]postal [1]Sweden [1]Susie
4 [1]id3 [1]home [1]Berlin <NA> <NA> [1]Frank
5 [1]id3 [1]home [1]Berlin <NA> <NA> [1]Max
6 [1]id3 <NA> <NA> [1]postal [1]France [1]Frank
7 [1]id3 <NA> <NA> [1]postal [1]France [1]Max
8 [1]id3 [1]work [1]London [1]postal [1]England [1]Frank
9 [1]id3 [1]work [1]London [1]postal [1]England [1]Max
resource_identifier
1 1
2 2
3 3
4 4
5 4
6 5
7 5
8 6
9 6

This will give you the appropriate product of all multiple entries.

16

If you just want all multiple entries molten correctly, you can use fhir_melt_all(). This function will find
all columns containing multiple entries and melt them appropriately. Note that this will only work if the
column names reflect the path to the corresponding resource element with . as a separator, e.g. name.given.
These names are produced automatically by fhir_table_description() when the cols element is unnamed
or omitted.
fhir_melt_all(df2, brackets = c("[","]"), sep=" | ")
id address.use address.city address.type address.country name.given
1 id1 home Amsterdam physical Netherlands Marie
2 id2 home Rome physical Italy Susie
3 id2 work Stockholm postal Sweden Susie
4 id3 home Berlin <NA> <NA> Frank
5 id3 home Berlin <NA> <NA> Max
6 id3 <NA> <NA> postal France Frank
7 id3 <NA> <NA> postal France Max
8 id3 work London postal England Frank
9 id3 work London postal England Max

As you can see fhir_melt_all() removes the indices by default. If you need the indices for some reason,
you can set rm_indices = FALSE:
fhir_melt_all(df2, brackets = c("[","]"), sep=" | ", rm_indices = FALSE)
id address.use address.city address.type address.country name.given
1 [1]id1 [1.1]home [1.1]Amsterdam [1.1]physical [1.1]Netherlands [1.1]Marie
2 [1]id2 [1.1]home [1.1]Rome [1.1]physical [1.1]Italy [1.1]Susie
3 [1]id2 [2.1]work [2.1]Stockholm [2.1]postal [2.1]Sweden [1.1]Susie
4 [1]id3 [1.1]home [1.1]Berlin <NA> <NA> [1.1]Frank
5 [1]id3 [1.1]home [1.1]Berlin <NA> <NA> [2.1]Max
6 [1]id3 <NA> <NA> [2.1]postal [2.1]France [1.1]Frank
7 [1]id3 <NA> <NA> [2.1]postal [2.1]France [2.1]Max
8 [1]id3 [3.1]work [3.1]London [3.1]postal [3.1]England [1.1]Frank
9 [1]id3 [3.1]work [3.1]London [3.1]postal [3.1]England [2.1]Max

Remove indices

Once you have sorted out the multiple entries, you might want to get rid of the indices in your data.frame.
This can be achieved using fhir_rm_indices():
fhir_rm_indices(molten_2, brackets=c("[","]"))
id address.use address.city address.type address.country name.given
1 id1 home Amsterdam physical Netherlands Marie
2 id2 home Rome physical Italy Susie
3 id2 work Stockholm postal Sweden Susie
4 id3 home Berlin <NA> <NA> Frank
5 id3 home Berlin <NA> <NA> Max
6 id3 <NA> <NA> postal France Frank
7 id3 <NA> <NA> postal France Max
8 id3 work London postal England Frank
9 id3 work London postal England Max
resource_identifier
1 1
2 2
3 3
4 4
5 4
6 5

17

7 5
8 6
9 6

Again, brackets and sep should be given the same character vector that was used for fhir_crack() and
fhir_melt() respectively.

18

	Preparation
	Extracting one resource type
	The table_description
	Examples

	Extracting more than one resource type
	Saving and reading designs

	Multiple entries
	Process Data Frames with multiple Entries
	Melt data frames with multiple entries
	Remove indices

