check_and_install | Function to check python environment and install necessary packages |
coef.deepregression | Generic functions for deepregression models |
create_family | Function to create (custom) family |
cv | Generic cv function |
cv.deepregression | Generic functions for deepregression models |
deepregression | Fitting Semi-Structured Deep Distributional Regression |
distfun_to_dist | Function to define output distribution based on dist_fun |
extractval | Extract value in term name |
family_to_tfd | Character-tfd mapping function |
family_to_trafo | Character-to-transformation mapping function |
fit | Generic train function |
fit.deepregression | Generic functions for deepregression models |
fitted.deepregression | Generic functions for deepregression models |
from_dist_to_loss | Function to transform a distritbution layer output into a loss function |
from_preds_to_dist | Define Predictor of a Deep Distributional Regression Model |
get_distribution | Function to return the fitted distribution |
get_partial_effect | Return partial effect of one smooth term |
get_type_pfc | Function to subset parsed formulas |
get_weight_by_name | Function to retrieve the weights of a structured layer |
handle_gam_term | Function to define smoothness and call mgcv's smooth constructor |
keras_dr | Compile a Deep Distributional Regression Model |
layer_add_identity | Convenience layer function |
layer_concatenate_identity | Convenience layer function |
log_score | Function to return the log_score |
loop_through_pfc_and_call_trafo | Function to loop through parsed formulas and apply data trafo |
makeInputs | Convenience layer function |
make_folds | Generate folds for CV out of one hot encoded matrix |
make_generator | creates a generator for training |
make_generator_from_matrix | Make a DataGenerator from a data.frame or matrix |
make_tfd_dist | Families for deepregression |
mean.deepregression | Generic functions for deepregression models |
names_families | Returns the parameter names for a given family |
orthog_control | Options for orthogonalization |
penalty_control | Options for penalty setup in the pre-processing |
plot.deepregression | Generic functions for deepregression models |
plot_cv | Plot CV results from deepregression |
predict.deepregression | Generic functions for deepregression models |
prepare_data | Function to prepare data based on parsed formulas |
prepare_newdata | Function to prepare new data based on parsed formulas |
print.deepregression | Generic functions for deepregression models |
processor | Control function to define the processor for terms in the formula |
quant | Generic quantile function |
quant.deepregression | Generic functions for deepregression models |
separate_define_relation | Function to define orthogonalization connections in the formula |
stddev | Generic sd function |
stddev.deepregression | Generic functions for deepregression models |
stop_iter_cv_result | Function to get the stoppting iteration from CV |
subnetwork_init | Initializes a Subnetwork based on the Processed Additive Predictor |
tfd_zinb | Implementation of a zero-inflated negbinom distribution for TFP |
tfd_zip | Implementation of a zero-inflated poisson distribution for TFP |
tf_stride_cols | Function to index tensors columns |