An Overview of glmnetr

Walter K. Kremers, Mayo Clinic, Rochester MN

30 December 2023

The Package

The nested.glmnetr() function of the ‘glmnetr’ package allows the user to fit multiple machine learning
models on a common dataset with a single function call allowing an efficient comparison of different mod-
eling approaches. Additionally this function uses cross validation to estimate model performances for these
different modeling approaches. As most of these machine learning models choose hyperparameters informed
by a cross validation or some sort of out of bag (OOB) performance measure, the nested.glmnetr() function
provides model performance estimates based upon either a nested cross validation or analogous approach.
Measures of model performance include concordances for survival time and binomial outcomes and R-squares
for quantitative numeric outcomes, as well as deviances and linear calibration coefficients. Too often one sees
performance reports including things like sensitivity, specificity or F1 scores in absence of any consideration
of calibration. Whereas linear calibration does not exhaust the needs of calibration considerations, it does
provide a first high level insight. As the purpose of the function is to not only describe performance but to
derive the models, each of the fitted models as well as performance measures are stored in a single output
object.

The nested.glmnetr() function fits cross validation informed Relaxed lasso, Artificial Neural Network
(ANN), gradient boosting machine (‘xgboost’), Random Forest (‘RandomForestSRC’), Recursive Partition-
ing (‘RPART’) and step wise regression models. As run times may be long, the user specifies which of these
models to fit. By default only the lasso model suite is fit, including the (standard) lasso, relaxed lasso, fully
relaxed lasso (gamma=0) and the ridge regression model. (The program was originally written to simply
compare the lasso and stepwise regression models and thus this inclusion of the lasso by default, as well as
the program name.) By default model performances are calculated using cross validation but if the goal is
to only fit the models this can be done using the option do_ ncv=0.

As with the ‘glmnet’ package, tabular and graphical summaries can be generated using the summary and
plot functions. Use of the ‘glmnetr’ has many similarities to the ‘glmnet’ package and the user may benefit
by a review of the documentation for the ‘glmnet’ package https://cran.r-project.org/package=glmnet, with
the “An Introduction to ‘glmnet’” and “The Relaxed Lasso” being especially helpful in this regard.

For some datasets, for example when the design matrix is not of full rank, ‘glmnet’ may have very long run
times when fitting the relaxed lasso model, from our experience when fitting Cox models on data with many
predictors and many patients, making it difficult to get solutions from either glmnet() or cv.glmnet(). This
may be remedied with the ‘path=TRUE’ option when calling cv.glmnet(). This option is not described in the
‘glmnet’ Reference Manual but is described in the ‘glmnet’ “The Relaxed Lasso” vignette. In the ‘glmnetr’
package we provide a similar workaround when fitting the non penalized relaxed model where gamma=0.

When fitting not a relaxed lasso model but an elastic-net model, then the R-packages ‘nestedcv’
https://cran.r-project.org/package=nestedcv, ‘glmnetSE’ https://cran.r-project.org/package=glmnetSE or
others may provide greater functionality when performing a nested CV.

https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=nestedcv
https://cran.r-project.org/package=glmnetSE

Data requirements

The basic data elements for input to the glmnetr analysis programs are similar to those of glmnet and
include 1) a matrix of predictors and 2) an outcome variable in vector form. For the different machine
learning modeling approaches the package is set up to model generalizations of the proportional hazards
Cox survival model, the “binomial” outcome logistic model and linear regression for well behave numerical
outcomes treated as if guassian in distribution. When fitting the Cox model the outcome model variable is
interpreted as the “time” variable in the Cox model, and one must also specify 3) a variable for event, again
in vector form, and optionally 4) a variable for start time, also in vector form. Row i of the predictor matrix
and element i of the outcome vector(s) are to include the data for the same sampling unit.

The input vectors may optionally be specified as column matrices (with only one column each) in which
case the column name will be kept and expressed in the model summaries.

An example dataset

To demonstrate usage of glmnetr we first generate a data set for analysis, run an analysis and evaluate
using the plot(), summary() and predict() functions.

The code

Simulate data for use in an example relazed lasso fit of survival data

first, optionally, assign a seed for random number gemeration to get replicable results
set.seed(116291949)

simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)

generates simulated data for analysis. We extract data in the format required for input to the glmnetr
programs.

Extract simulated survival data

xs = simdata$xs # matriz of predictors

y_ simdata$yt # vector of survival times

event = simdata$event # indicator of event vs. cemsoring

Inspecting the predictor matrix we see

Check the sample size and number of predictors
print (dim(xs))

[1] 1000 100

Check the rank of the design matriz, i.e. the degrees of freedom in the predictors
rankMatrix(xs) [[1]]

[1] 94

Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20

[1,] 1 1 0 0 0 O O O O 1 0 1 0.1513225 -0.4034383 0.35250844
[2,] 1 0 0 0 1 0 O 1 O O O 0 -1.1610480 0.5533030 0.14578868
[3,] 1 0 0 1 0 O 1 O O O O 0 -0.3292269 0.3086399 -0.48443836
[4,] 1 1 0 0 O O 0 0 O 1 O O 2.0635214 -0.5500741 -0.02173104
[6,] 1 0 0 0 1 0O O 1 O O O O 0.3905722 -0.6836452 -0.37643201
[6,] 1 0 1 0 O O O O 1 O O O -0.2397597 1.6909447 0.49599945
[7,] 1 0 1 0 0 O O 1 O O O O -0.5592424 0.2314638 -0.53198341
[8,] 1 0 0 1 0 O O O O O 1 0 -1.0050514 0.5319574 0.54287646
[9,] 1 0 0 1 0 O O O O O 1 0 1.2548034 0.8213164 0.17067691
[10,] 1 0 0 0 1 0 0 0O 1 O O O -0.3079151 -0.6105910 -0.88711869

Performance of cross validation (CV) informed relaxed lasso model
fit

Because the values for lambda and gamma informed by CV are specifically chosen to give a best fit, model fit
statistics for the CV derived model will be biased. To address this one can perform a CV on the CV derived
estimates, that is a nested cross validation as argued for in SRDM (Simon R, Radmacher MD, Dobbin
K, McShane LM. Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification.
J Natl Cancer Inst (2003) 95 (1): 14-18. https://academic.oup.com/jnci/article/95/1/14/2520188). We
demonstrate the model performance evaluation by nested cross validation first for the lasso models with
the evaluation of other machine learning models being similar. For this performance evaluation we use the
nested.glmnetr() function which first fits lasso models based upon all data and then performs the cross
validation for calculation of concordances or R-squares, deviances and linear calibration summaries.

set.seed (465783345)
nested.cox.fit = suppressWarnings(nested.glmnetr(xs, NULL, y_, event, family='"cox",
dostep=1, folds_n=10, track=0))

Note, in the derivation of the relaxed lasso model fits, individual coefficients may be unstable even when the
model may be stable which elicits warning messages. Thus we “wrap” the call to nested.glmnetr() within
the suppressWarnings() function to avoid excessive warning messages in this vignette. The first term in the
call to nested.glmnetr(), xs, is the design matrix for predictors. The second input term, here NULL, is for
the start time in case the (start, stop) time data setup is used in a Cox survival model fit. The third term is
the outcome variable for the linear regression or logistic regression model and the time of event or censoring
in case of the Cox model, and finally the forth term is the event indicator variable for the Cox model taking
the value 1 in case of an event or 0 in case of censoring at time y_. The forth term would be NULL for
either linear or logistic regression. If one sets track=1 the program will update progress in the R console,
else for track=0 it will not.

Before numerically summarizing the model fit, or inspecting the coefficient estimates, we inspect the average
cross validation deviance using the plot function.

Plot cross wvalidation average deviances for a relared lasso model
plot(nested.cox.fit)

min CV average deviance (max log likelihood) for

#it relaxed at log(lambda) = -3.176, gamma.min = 0.25, df = 19
#it fully relaxed at log(lambda) = -2.897, df = 14

#Hit fully penalized at log(lambda) = -3.827, df = 44

https://academic.oup.com/jnci/article/95/1/14/2520188

Relaxed lasso CV Deviance, gamma.min=0.25
83 73 57 38 24 15 10 9 8 5 3 2 1

Q
0
0
- N
c
]
>
@]
o 9 |
(&)
o~
8
>
]
T w0
©
o | V=
< |

log(lambda)

In that to maximize the log-likelihood is to minimize deviance we inspect these curves for a minimum.
The minimizing lambda is indicated by the left most vertical line, here about log(lambda) = -3.18. The
minimizing gamma is 0.25 and described in the title. Whereas there is no legend here for gamma, when
non-zero coefficients start to enter the model as the penalty is reduced, here shown at the right, deviances
tend to be smaller for gamma = 0, greater for gamma = 1 and in between for other gammas values. From
this figure we also see that at lambda=0.25 the deviance is hardly distinguishable for gamma ranging from
0.5 to 1. More relevant we see that the fully unpenalized lasso model fits (gamma=0) shown in a black line
with a black circle at the largest lambda, achieves a minimal deviance at about -2.9, and highlighted by the
right most vertical line. The minimizing deviance for the fully relaxed lasso model is “nearly” that of the
relaxed lasso model tuning for both lambda and gamma.

A plot depicting model fits as a function of lambda is given in the next figure.
Plot coefficients informed by a cross wvalidation

plot(nested.cox.fit, coefs=TRUE)

min CV average deviance (max log likelihood)
at log(lambda.min) = -3.176, gamma.min = 0.25, df = 19

Relaxed lasso fit at minimizing gamma 0.25
83 73 57 38 24 15 10 9 8 5 3 2 1

o —]
Lo
2 4
o _
c o]
q) - p—
5 ©
S _
(@]
O
d —]
|
L0
ri —]
' | | | | |
-5 -4 -3 -2 -1
Log Lambda

In this plot of coefficients we use the same orientation for lambda as in the plot for deviances with larger
values of the lambda penalty to the right and corresponding to fewer non-zero coefficients. The displayed
coefficients are for the minimizing gamma=0.25 as noted in the tile, and the minimizing lambda indicated
by the vertical line. Since the fully relaxed lasso model had a deviance almost that of the relaxed lasso
model we also plot the coefficients using the option gam=0.

Plot fully relazed coefficients informed by a cross validation

plot(nested.cox.fit, coefs=TRUE, gam=0)

Fully relaxed min CV average deviance (max log likelihood)
at log(lambda.min) = -2.897, df = 14

Fully relaxed lasso fit for gamma =0
83 73 57 38 24 15 10 9 8 5 3 2 1

] \i
Lo
= —
9 _
& v _
o ©
© _
(@]
O Lo
d —]
|
L0
ri —]
' | | | | |
-5 -4 -3 -2 -1
Log Lambda

In addition to simply showing how the coefficients change as the lambda penalty is decreased, this plot
shows how the coefficients change for the un-penalized (fully relaxed) model with gamma=0 as lambda
decreases. In particular we see the coefficients become slightly larger in magnitude as the lambda penalty
decreases and also as additional terms come into the model. This is not unexpected as omitted terms from
the Cox model tend to bias coefficients toward 0 more than increase the standard error. We also see, as too
indicated in the deviance plot, the number of model non-zero coefficients, 14, to be substantially less than
the 19 from the relaxed lasso fit and the 44 from the fully penalized lasso fit.

As usual with R functions and packages we use the summary function to describe output. Here the summary
function displays a brief summary of the input data and program options before proceeding to describe
model performances. The data summary includes sample size, number of events, number of candidate model
predictors, degress of freedom in these predictors as well as average deviance. Model performances are
displayed for the different lasso models, e.g. standard, relaxed, fully relaxed as well as the ridge regression
and stepwise regression models.

Hyperparameters considered for the lasso models include both the minimizing lambdas as well as the “1se”
or “one standard deviation” lambdas for the relaxed lasso fit informed by CV. Hyperparamters considered
for stepwise regression were degress of freedom (df) and p, the p-value for entry into the regression equation,
as discussed by JWHT (James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with
applications in R, 2nd ed., Springer, New York, 2021). Performance measures include deviance, linear cali-
bration coefficients and measures of agreement, here for the Cox model framework concordance. Additionally
there are the deviance and agreement from the whole sample. Observe how the deviances are much larger
for the whole sample than for the deviances for the leave out samples in the (outer) cross validation. This is
because the risk sets are larger for the whole sample leading to larger numbers derived at each event time.

Summarize relazed lasso model performance informed by cross wvalidation
summary (nested.cox.fit)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Sample information including number of records, events, number of

design (predictor, X) matrix, and df (rank) of design matrix:
Xs.columns

family

IICOXII
null.dev/events
"12.43"

n
"1000"

Tuning parameters for models :

folds_n stratified
Illoll lllll

limi
Ill

t

nevents
n 698 n

fine
IIOII

ties
"efron"

n 100"

method
"loglik"

Average Null Deviance for leave out folds in outer loop :

7.859

Nested Cross Validation averages for LASSO (1se and min), Relaxed LASSO, and gamma=0 LASSO :

deviance per event
1se min 1seR
5.971 5.924 5.944

minR 1seR.GO minR.GO

5.920

5.937

5.929

deviance per event (linerly calibrated)
minR 1seR.GO minR.GO

1se min 1seR
5.901 5.899 5.909

5.896

5.914

number of nonzero model terms :
minR 1seR.GO minR.GO

1se min 1seR
22.6 47 .2 16.3

20.0

11.9

linear calibration coefficient :
minR 1seR.GO minR.GO

1se min 1seR
1.248 1.083 1.150

1.006

agreement (concordance)
minR 1seR.GO minR.GO

1se min 1seR
0.874 0.873 0.874

0.875

0.982

0.873

5.895

15.3

0.963

0.874

ridge
6.095

ridge
5.998

ridge
1.313

ridge
0.866

Naive deviance for cross validation informed LASSO :
1se min 1seR
10.47547 10.32173 10.47907 10.30440 10.29365 10.23326 10.29460

minR

1seR.GO minR.GO

ridge

Number of non-zero terms in cross validation informed LASSO :
minR 1seR.GO minR.GO

1se min 1seR
19 44 14

19

10

14

ridge
99

Naive agreement for cross validation informed LASSO :
minR 1seR.GO minR.GO

1se min 1seR
0.874 0.879 0.873

Nested Cross Validation STEPWISE regression model (df):

0.879

0.879

0.881

ridge
0.882

Average linear calibration coefficient: 0.973

Average deviance :

5.863

columns in

xs.df
lI94II

steps_n
n 1OOII

Average model df : 14.5

#i# Concordance : 0.878

Naive concordance based upon the same (all) data as model derivation (df): 0.878
Model df 15

##

Nested Cross Validation STEPWISE regression model (p):
Average linear calibration coefficient p : 0.973
Average deviance : 5.854

#i# Average model p : 0.013

Average model df : 15

#it Concordance : 0.879

Naive concordance based upon the same (all) data as model derivation (p): 0.878
#i# Model df 15

From this output we also see the number of non-zero coefficients in the different models, reflecting model
complexity, along with the linear calibration coefficients obtained by regressing the outcome on the predicteds.

In addition to evaluating the CV informed relaxed lasso model using another layer of CV, the
nested.glmnetr() function also calculates model performances based upon all data for the model based upon
all data. Here we see, not unexpectedly, that the concordances estimated from the nested CV are slightly
smaller than the concordances naively calculated using the original dataset. Depending on the data the
nested CV and naive agreement measures, here concordance, can be very similar or disparate.

A summary of the actual lasso model fit can be gotten by using the cvfit=1 option in the summary() call.

Summarize relared lasso model fit informed by cross wvalidation
summary (nested.cox.fit, cvfit=1)

##
The relaxed minimum is obtained for lambda = 0.04174656 , index = 27 and gamma = 0.25
with df (number of non-zero terms) = 19, average deviance = 5.987085 and beta =

#i# X4 X5 X7 X10 X14
1.050952e+00 -1.298945e+00 2.912949e-02 -5.966936e-01 1.043615e+00
X15 X16 X18 X19 X20
-1.719568e-16 -9.378331e-01 1.127645e+00 3.149391e-01 -1.253247e-01
X21 X22 X23 X24 X25
3.707304e-01 -6.039354e-01 3.263490e-01 2.789101e-01 1.784703e+00
#i# X38 X60 X88 X971

1.011793e-01 -4.634282e-02 4.740086e-02 -3.554883e-02

##

The fully relaxed (gamma=0) minimum is obtained for lambda = 0.0551865 and index = 24
with df (number of non-zero terms) = 13, average deviance = 5.993744 and beta =

X4 X5 X7 X10 X14 X18 X19
1.0941352 -1.3627747 -0.6659735 -0.5988756 0.4916291 1.1792301 0.3302211
X20 X21 X22 X23 X24 X25

-0.1444546 0.3820778 -0.6270995 0.3448224 0.3085746 1.8435742

#i#

The UNrelaxed (gamma=1) minimum is obtained for lambda = 0.02176669 and index = 34
with df (number of non-zero terms) = 44, average deviance = 6.010734

#i#

##

Order coefficients entered into the lasso model (1st to last):

[1] IIX25" IIX18II "X5|I IIX22II IIX4II IIX21II IIX23|I IIX19II IIX24II "X10"
[11] IlX?ll IIXQOII llx14ll IIX38II IIX97H IIX16II IIXGOII IIX88II IIX12lI IIX43"

[21] IIX71II lIXlOOII IIX34I| |IX32II IIX5OI| IIX58II I|X41l| IIX49II IIX64|I IIX84II

[31]
[41]

legl n
IIX7OII

n X98 n
n X96 n

I|X39 n
"X63I|

n X4O n
IIX77II

IIX66lI IIX73|l llx74|l IIX11II IIX61II "X69"

In the summary output we first see the relaxed lasso model fit based upon the (lambda, gamma) pair which
minimizes the cross validated average deviance. Next is the model fit based upon the lambda that minimizes
the cross validated average deviance along the path where gamma=0, that is among the fully relaxed lasso
models. After that is information on the fully penalized lasso fit, but without the actual coefficient estimates.
These estimates can be printed using the option printgl=TRUFE, but are suppressed by default for space.
Finally, the order that coefficients enter the lasso model as the penalty is decreased is provided, which
gives some indication of relative model importance of the coefficients. Because, though, the differences in
successive lambda values used in the numerical algorithms may allow multiple new terms to enter into the
model between successive numerical steps, the ordering in this list may not be strict. If the user would want
they could read lambda from output$lambda, set up a new lambda with finer steps and rerun the model.
Our experience though is that this does not generally lead to a meaningfully different model and so is not
done by default or as option.

One can as well use the predict() function to get the coefficients for the lasso model, which is done by not
specifying a predictor matrix. If one specifies a new design matrix xs_ new, then the predicteds xs_ new*beta
are generated. In contrast to the summary function which simply displays coefficients, the predict function
provides an output object in vector form (actually a list with two vectors) and so can more easily be used for
further calculations. By default the summary function will use the (lambda, gamma) pair that minimizes
the average CV deviances. One can also specify lam=NULL and gam=1 to use the fully penalized lasso best
fit, that use the solution that minimizes the CV deviance with respect to lambda while holding gamma=1,
or gam=0 to use the fully relaxed lasso best fit, that is minimizes while holding gamma=0. One can also
numerically specify both lam for lambda and gam for gamma. Within the package lambda and gamma
usually denote vectors for the search algorithm and so other names are used here.

Get coefficients
beta = predict(nested.cox.fit)

#i#
(lambda, gamma) pair minimizing CV average deviance is used

Print out the mon-zero coefficients

beta$beta

X4 X5 X7 X10 X14
1.050952e+00 -1.298945e+00 .912949e-02 -5.966936e-01 1.043615e+00
#it X15 X16 X18 X19 X20
-1.719568e-16 -9.378331e-01 .127645e+00 3.149391e-01 -1.253247e-01
X21 X22 X23 X24 X25
3.707304e-01 -6.039354e-01 .263490e-01 2.789101e-01 1.784703e+00
X38 X60 X88 X97

1.011793e-01 -4.634282e-02 .740086e-02 -3.554883e-02

Print out all coefficients

beta$beta_

X1 X2 X3 X4 X5
0.000000e+00 0.000000e+00 .000000e+00 1.050952e+00 -1.298945e+00
X6 X7 X8 X9 X10
0.000000e+00 2.912949e-02 .000000e+00 0.000000e+00 -5.966936e-01

#it X11 X12 X13 X14 X15
0.000000e+00 0.000000e+00 .000000e+00 .043615e+00 -1.719568e-16
#i# X16 X17 X18 X19 X20
-9.378331e-01 0.000000e+00 .127645e+00 .149391e-01 -1.253247e-01
#it X21 X22 X23 X24 X25
3.707304e-01 -6.039354e-01 .263490e-01 .789101e-01 1.784703e+00
#i# X26 X271 X28 X29 X30
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#i# X31 X32 X33 X34 X35
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#it X36 X37 X38 X39 X40
0.000000e+00 0.000000e+00 .011793e-01 .000000e+00 0.000000e+00
X41 X42 X43 X44 X45
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#i# X46 X47 X48 X49 X50
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#it X51 X52 X563 X54 X55
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
X56 X57 X58 X59 X60
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 -4.634282e-02
#it X61 X62 X63 X64 X65
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
X66 X67 X68 X69 X70
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#i# X71 X72 X73 X74 X75
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#it X76 X771 X78 X79 X80
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
X81 X82 X83 X84 X85
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
#it X86 X87 X88 X89 X90
0.000000e+00 0.000000e+00 .740086e-02 .000000e+00 0.000000e+00
#it X91 X92 X93 X94 X95
0.000000e+00 0.000000e+00 .000000e+00 .000000e+00 0.000000e+00
X96 X97 X98 X99 X100
0.000000e+00 -3.554883e-02 .000000e+00 .000000e+00 0.000000e+00
Get the predicteds (linear predictors) for the original data set
predicteds = predict(nested.cox.fit, xs)

#i#

(lambda, gamma) pair minimizing CV average deviance is used

Print out the first few predicteds

predicteds[1:20]

[1] -0.6446191 -3.4901590 4.3166516 1.3425973 -0.1500069 1.2901788
[7] -3.8608813 0.3456247 6.1151657 1.5431362 1.0919012 -1.7379752
[13] 0.7941607 2.7537587 -0.6522066 0.5313555 0.8459184 3.3600472
[19] -2.4937645 1.9657998

10

Nested cross validation for multiple machine learning models

Here we evaluate multiple machine learning models, in particular the lasso, XGB, random forest and neural
network models. For this example too we perform an analysis for the generalizations of linear regression in
contrast to the Cox model in the last example. The glmnetr.simdata() function used above actually creates
an output object list contains not only xs for the predictor matrix, yt for time to event or censoring and
event for event indication but also y__ for a normally distributed random variable for the linear model setting
and yb for the logistic model setting.

Nested cross wvaltidation evaluated machine learning model suite and guassian errors
use the same simulated data output object from above, that is from the call
simdata=glmnetr.simdata (nrows=1000, ncols=100, beta=NULL)

#
extract linear regresston model data
yg = simdata$y_ # vector of Gaussian (normal) outcomes

Get the ML model fits

nested.gau.fit = suppressWarnings(nested.glmnetr(xs,NULL,yg,NULL,family="gaussian",
dolasso=1, doxgb=1, dorf=1, doann=1, ensemble=c(1,0,0,0, 0,1,0,1), folds_n=10,
seed=219301029, track=0))

summary (nested.gau.fit)

##
Sample information including number of records, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:

#i# family n xs.columns xs.df null.dev/obs

"gaussian" "1000" "100" o4 "8.09"

#i#

Tuning parameters for models :

folds_n stratified limit fine ties

#i# "10" " " "o" "efron"

#i#

Tuning parameters for 1/lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr wd
#it 10.000 200.000 18.000 10.000 1.000 0.000 0.001 0.000
11 lscale scale

#i# 0.000 5.000 1.000

#i#

Average Null Deviance for leave out folds in outer loop :

#i#t 8.067

#it

#i#

Nested Cross Validation averages for LASSO (1se and min), Relaxed LASSO, and gamma=0 LASSO :
##

deviance per record :

1se min 1seR minR 1seR.GO minR.GO ridge
1.161 1.123 1.138 1.128 1.132 1.139 1.213
##

#it deviance per record (linerly calibrated)

1se min 1seR minR 1seR.GO minR.GO ridge
1.127 1.106 1.118 1.114 1.120 1.127 1.140
##

number of nonzero model terms :

#it 1se min 1seR minR 1seR.GO minR.GO

11

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

30.1 60.5 21.2 28.9 17.5 22.9
linear calibration coefficient :
1se min 1seR minR 1seR.GO minR.GO
1.056 1.018 1.036 1.013 0.996 0.993
agreement (r-square)
1se min 1seR minR 1seR.GO minR.GO
0.859 0.861 0.860 0.860 0.859 0.859

ridge
1.097

ridge
0.857

Naive deviance for cross validation informed LASSO :

1se min 1seR minR

1seR.GO

minR.GO

ridge

1.0547535 0.9760810 1.0547535 0.9760810 0.9762544 0.9423096 0.9659641

Number of non-zero terms in cross validation informed LASSO :

1se min 1seR minR 1seR.GO minR.GO

36 66 36 66 12

26

ridge
99

Naive agreement for cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO

0.871 0.880 0.871 0.880 0.879

0.884

ridge
0.884

Nested Cross Validation averages for XGBoost model :

deviance per record :
Simple Feature O0Offset Tuned Feature
2.466 1.445 1.153 1.518 1.214

linear calibration coefficient :
Simple Feature 0Offset Tuned Feature
1.129 0.997 0.987 1.080 1.032

agreement (r-square)
Simple Feature O0Offset Tuned Feature
0.705 0.821 0.857 0.818 0.851

Naive agreement for cross validation informed XGBoost model :

Simple Feature O0Offset Tuned Feature
0.999 1.088 0.895 0.946 0.894

Offset
1.129

Offset
0.993

Offset
0.860

Offset
0.880

Nested Cross Validation averages for Random Forest :

deviance per record :
None Feature Offset
2.332 1.231 1.138

average number of variables randomly selected for the RF :

None Feature Offset
58.0 59.9 32.5

linear calibration coefficient :
None Feature Offset

12

1.218 1.030 0.991

##

#it agreement (r-square)

None Feature Offset

0.737 0.848 0.859

##

Naive Random Forest agreement (r-square)
Standard Feature Offset

#it 0.950 0.967 0.965

##

##

Nested Cross Validation averages for neural network :
##

deviance per record :

#it Uninformed 1/lasso feat 1/lasso update
2.602 1.271 1.147
##

linear calibration coefficient :

#it Uninformed 1/lasso feat 1/lasso update
0.949 0.981 0.994
##

#Hit agreement (r-square)

#it Uninformed 1/lasso feat 1/lasso update
#i# 0.683 0.843 0.860
##

Cross validation informed neural network :
##

naive agreement :

#t Uninformed 1/lasso feat 1/lasso update
0.959 0.927 0.880

Here we see a set of machine learning models evaluated together. Information displayed is similar to what we
saw before with the main difference being that for many ML models there are no “number of non-zero terms”
like for the lasso. All evaluations are based upon the same folds for the outer loop of the cross validation.
Those models informed by cross validation in identification of hyperparameters, i.e. lasso, neural network
and stepwise, use the same folds in the inner cross validation making the comparisons of model performance
between models more stable. For the models based upon other random splitings, i.e. XGB, random forest
and RPART, the same seed is set using set.seed() before each model call facilitating replicability of results.

The indiviudal model fits are all captured in the nested.glmnetr() output object with names like
cv_glmnet_ fit, xgb.simple.fit, xgb.tuned.fit, rf.fit, cv.stepreg.fit and ann_fit X with X corresponding
to the ensemble designation. cv_glmnet fit has a similar yet different format to that of cv.glmnet() by
including further fit information. The XGB outputs are direct outputs from ‘xgboost’ xgb.train(). The rf.fit
object contains the output from rfsrc() in the object rf.fit$rf tuned along with other information used for
tuning. The ann_ fit_ X objects are derived using the R ‘torch’ package and take on their own format for
logistical reasons. See the ‘Using ann_ tab_ cv’ vignette. Cross validation information form the individual
outer folds are are contained in datasets like xx.devian.cv, xx.lincal.cv, xx.agree.cv for further processing by
the summary() function or by the user. For example

Manually calculate CV R_square for lasso models
corr.cv = nested.gau.fit$lasso.agree.cv

avecorr = colMeans(corr.cv)

R_square = avecorr "2

R_square

13

1se min 1seR minR 1seR.GO minR.GO ridge
0.8586666 0.8612704 0.8597374 0.8602448 0.8594145 0.8587198 0.8569730

These numbers are consistent witht the output from the summary() call.

In this and the previous examples using nested.glmnetr() we specified values for seed. This assures that the
user can test the program with their own installation and get the same results. Typically in practice one can
leave the seed unspecified and the program will generate its own seeds and store these in the output object
(object$seed) for future reference. One should be cautious of using set.seed() in one’s own code as this too
will effect the pseudo randomness used in the ML calculations and could unwantingly yield identical results
when pseudo independent runs are intended.

Further model assessment

Further model assessment can performed based upon the predicteds from the predict functions. For
example, ene can model the outcomes based upon a spline for the X*Beta hats from the predicteds. This
may help to understand potential nonlinearities in the model, but may also give inflated hazard ratios.

Get predicteds from CV relaxed lasso model embedded in nested CV outputs & Plot
xb.hat = predict(object=nested.cox.fit , xs_new=xs, lam=NULL, gam=NULL, comment=FALSE)
describe the distribution of zb.hat

round (1000*quantile(xb.hat,c(0.01,0.05,0.1,0.25,0.5,0.75,0.90,0.95,0.99))) /1000

1% 5% 10% 25% 50% 75% 90% 95% 99%
-5.839 -4.122 -3.233 -1.804 -0.070 1.578 3.188 3.989 5.449

Fit a spline to xzb.hat uisng cozxzph, and plot
fitl = coxph(Surv(y_, event) ~ pspline(xb.hat))

summary (fit1)

Call:

coxph(formula = Surv(y_, event) ~ pspline(xb.hat))

##

n= 1000, number of events= 698

##

#it coef se(coef) se2 Chisq DF p
pspline(xb.hat), linear 1.073 0.03335 0.03335 1034.93 1.00 4.6e-227
pspline(xb.hat), nonlin 3.77 3.04 2.9e-01
##

#Hit exp(coef) exp(-coef) lower .95 upper .95

ps(xb.hat)3 7.221e+00 1.385e-01 7.047e-01 7.400e+01

ps(xb.hat)4 5.215e+01 1.918e-02 8.007e-01 3.396e+03

ps(xb.hat)5 3.764e+02 2.657e-03 1.508e+00 9.393e+04

ps(xb.hat)6 2.664e+03 3.754e-04 5.104e+00 1.390e+06

ps(xb.hat)7 1.634e+04 6.121e-05 2.699e+01 9.886e+06

ps(xb.hat)8 1.036e+05 9.656e-06 1.791e+02 5.990e+07

ps(xb.hat)9 9.080e+05 1.101e-06 1.561e+03 5.283e+08

ps(xb.hat)10 4.941e+06 2.024e-07 8.443e+03 2.892e+09

ps(xb.hat)11l 2.882e+07 3.470e-08 4.875e+04 1.704e+10

ps(xb.hat)12 2.757e+08 3.627e-09 4.437e+05 1.713e+11

ps(xb.hat)13 3.015e+09 3.317e-10 4.081e+06 2.228e+12

14

ps(xb.hat)14 3.389e+10 2.950e-11 2.878e+07 3.991e+13

##
Iterations: 4 outer, 16 Newton-Raphson
Theta= 0.7383276

Degrees of freedom for terms= 4
Concordance= 0.879 (se = 0.005)
Likelihood ratio test= 1494 on 4.04 df, p=<2e-16

termplot (fitl,term=1,se=TRUE)

10

Partial for pspline(xb.hat)
0
I

-10

-15

xb.hat

From this spline fit we see the predicteds are approximately linear with the log hazard ratio.

15

	The Package
	Data requirements
	An example dataset
	Performance of cross validation (CV) informed relaxed lasso model fit
	Nested cross validation for multiple machine learning models
	Further model assessment

