library(dplyr)
library(explore)
A classic count()
returns the number of
observations.
<- use_data_penguins()
data %>% count(island)
data #> # A tibble: 3 × 2
#> island n
#> <fct> <int>
#> 1 Biscoe 168
#> 2 Dream 124
#> 3 Torgersen 52
To add percent values, simply use count_pct()
from
{explore}.
%>% count_pct(island)
data #> # A tibble: 3 × 4
#> island n total pct
#> <fct> <int> <int> <dbl>
#> 1 Biscoe 168 344 48.8
#> 2 Dream 124 344 36.0
#> 3 Torgersen 52 344 15.1
%>% glimpse()
data #> Rows: 344
#> Columns: 8
#> $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel…
#> $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse…
#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
#> $ sex <fct> male, female, female, NA, female, male, female, male…
#> $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
To add an id variable, simply use add_var_id()
from
{explore}.
%>% add_var_id() %>% glimpse()
data #> Rows: 344
#> Columns: 9
#> $ id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
#> $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel…
#> $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse…
#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
#> $ sex <fct> male, female, female, NA, female, male, female, male…
#> $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
Create a user defined report (RMarkdown template) to explore your own data.
create_notebook_explore(
output_dir = tempdir(),
output_file = "notebook-explore.Rmd")
Create a Data Dictionary of a data set (Markdown File data_dict.md)
%>% data_dict_md(output_dir = tempdir()) iris
Add title, detailed descriptions and change default filename
<- data.frame(
description variable = c("Species"),
description = c("Species of Iris flower"))
data_dict_md(iris,
title = "iris flower data set",
description = description,
output_file = "data_dict_iris.md",
output_dir = tempdir())
<- mix_color("blue", n = 5)
colors
colors#> [1] "#000055" "#0000AA" "#0000FF" "#5454FF" "#A9A9FF"
show_color(colors)
<- mix_color("gold", "red", n = 4)
colors
colors#> [1] "#FFD700" "#FF8F00" "#FF4700" "#FF0000"
show_color(colors)